ニーナ・パツケ 助教/PATZKE, Nina

哺乳類の大脳はどうしてこんなに大きいのだろう?

ニーナ・パツケ 助教/PATZKE, Nina

研究分野・テーマ・内容

研究分野 進化神経科学、比較神経解剖学
研究テーマ 哺乳類の脳の進化

研究内容

「哺乳類の脳は、どのように進化してきたのか」それを理解するための研究を進めています。この問いにきちんと応えるためには、まず、哺乳類の脳が種ごとに異なっていて、とても多様であること、を考えなくてはなりません。大きさ1つとっても、最大の脳と最小の脳とは10万倍も違います。コウモリの中には0.1gに満たない脳を持つものがいる一方で、マッコウクジラの脳は9,000gにもなります。そんな多様性の中にも、秩序だった共通性があります。大きくても小さくても、どの脳にもはっきりした大脳皮質があり、前方には嗅球が、後方には小脳が、そして脳幹からあとには脊髄が伸びています。私は比較神経解剖学の方法を用いて、哺乳類の脳がどのように進化して種ごとに違ったものになっていったのか、を研究しています。特に大きな脳をもつ哺乳類(アフリカゾウ、キリン、そしてクジラ)の脳に興味があるのです。

鯨偶蹄目の脳の進化。A:ミンククジラ、B:カバ、C:クーズーの海馬。鯨の海馬が著しく小さいことに注意。

 

メッセージ

人間がなぜこのように大きな脳を持つよう進化したのか、これを理解するためにも様々な動物の脳を調べなくてはなりません。ただ形を見るだけでは不十分で、最新の技術を使わねばなりません。例えば、免疫組織化学や脳画像解析(拡散テンソルイメージング法、脳の線維連絡を画像化するもの)、等方性細胞分画法(ニューロンとグリアの細胞を正確に数える方法)などです。脳の研究に興味のある人、特に神経解剖学や脳の進化について学びたいと思っている人、これらの技術について知りたい人は、ぜひ私の研究室を訪ねてください。

参考文献・論文・著書

Selected Peer Reviewed Publications:

  • Pillay S, Bhagwandin A, Bertelsen MF, Patzke N, Engler G, Engel AK, Manger PR. Regional distribution of cholinergic, catecholaminergic, serotonergic and orexinergic neurons in the brain of two carnivore species: The feliform banded mongoose (Mungos mungo) and the caniform domestic ferret (Mustela putorius furo). Chem Neuroanat. 14;82:12-28 (2017)
  • Ngwenya A, Patzke N, Manger PR, Herculano-Houzel S. Continued growth of the central nervous system without mandatory addition of neurons in the Nile crocodile (Crocodylus niloticus). Brain Behav Evol. 87(1):19-38. (2016)
  • Patzke N, Spocter MA, Karlsson KAE, Bertelsen MF, Haagensen M, Chawana R, Streicher S, Kaswera C, Gilissen E, Alagaili A, Mohammed OB, Reep RL, Bennett NC, Siegel JM, Ihunwo AO, Manger PR. In contrast to many other mammals, cetaceans have relatively small hippocampi that appear to lack adult neurogenesis. Brain Struct Funct. 220(1):361-83 (2015)
  • Patzke N, LeRoy A, Ngubane NW, Bennett NC, Medger K, Gravett N, Kyamakya CK, Gilissen E, Chawana R, Manger PR. The distribution of doublecortin immunopositive cells in the brains of four afrotherian mammals: hottentot golden mole (Amblysomus hottentotus), the rock hyrax (Procavia capensis), the eastern rock sengi (Elephantulus myurus) and the four-toed sengi (Petrodromus tetradactylus) Brain Behav Evol. 84(3):227-41 (2014)
  • Patzke N, Bertelsen MD, Manger PR. Nuclear organization of cholinergic, putative catecholaminergic, serotonergic and orexinergic systems in the brain of the Tasmanian devil (Sarcophilus harrisii). J Chem Neuroanat. 61?62:94?106 (2014)
  • Patzke N, Innocenti GM, Manger PR. The claustrum of the ferret: afferent and efferent connections to lower and higher order visual cortical areas. Front Syst Neurosci. doi: 0.3389/fnsys.2014.00031 (2014)
  • Patzke N, Olaleye O, Haagensen M, Hof PR, Ihunwo AO, Manger PR. Organization and chemical neuroanatomy of the African elephant (Loxodonta africana) hippocampus. Brain Struct Funct. 219:1587?1601 (2014)
  • Maseko BC, Patzke N, Fuxe K, Manger PR. Architectural Organization of the African Elephant diencephalon and brainstem. Brain Behav. Evolt. 82(2):83-128 (2013)
  • Ngwenya A, Patzke N, Spocter MA, Kruger JL, Dell LA, Chawana R, Mazengenya P, Billings BK, Olaleye O, Herculano-Houzel S, Manger PR. The continuously growing central nervous system of the Nile crocodile (Crocdylus niloticus). Anat Rec. 296(10):1489-500 (2013)
  • Manger PR, Spocter MA, Patzke N. The evolutions of large brain size in mammals ? the “over 700 g club quartet”. Brain Behav Evol. 82(1):68-78 (2013)
  • Dell LA, Patzke N, Bhagwandin A, Bux F, Fuxe K, Barber G, Siegel JM, Manger PR. Organization and number of orexinergic neurons in the hypothalamus of two species of Cetartiodactyla: A comparison of giraffe (Giraffa camelopardalis) and harbour porpoise (Phocoena phocoena). J Chem Neuroanat. 44: 98-109 (2012)

Book Chapters:

  • Patzke N, Manger PR. Some Comparative Aspects of the Mammalian Hippocampus. In (Editors: Kaas J, Striedter G, Krubitzer L, Herculano-Houzel S, Preuss T) Evolution of Nervous Systems 2e. vol. 2, Oxford: Elsevier, pp. 429?435 (2017)
  • Manger PR, Patzke N, Gravett N, Bennett NC. Unusual Cortical Lamination Patterns in the Sengis (Elephant Shrews) Do Not Appear to Influence the Presence of Cortical Minicolumns. In (Editors: Casanova MF, Opris I) Recent Advances on the Modular Organization of the Cortex, Chapter: 6, Springer, pp.81-96 (2015)

 

nameNina Patzke

Research subject

Specialized field

Evolution of the mammalian brain

Key words

・evolutionary neuroscience
・comparative neuroanatomy
・brain evolution
・large brains
・mammals
・Cetartiodactyla
・adult hippocampal neurogenesis

Research subject

In my research I would like to understand how did the mammalian brain evolve?

To properly place the research needed to answer this question, we first have to appreciate the tremendous diversity of mammalian brains.  For instance, brain size between mammals varies by a factor of approximately 100,000, with absolute brain size ranging from less than 0,1g in some bats and insectivores, up to 9000g in sperm whales.  Amongst the diversity, however, lies some kind of order. For example, all mammalian brains have a readily recognizable cerebral cortex, olfactory bulbs up front, a cerebellum in the back of the brain, and a brainstem that is contiguous with the spinal cord. Using the comparative neuroanatomical approach on non-model organisms, I aim to determine commonalities of different brains, but I also want to find out in which way they differ. This will allow us to understand how evolutionary mechanisms give rise to this ordered diversity. Specifically, I am interested in the mechanism behind the evolution of large mammalian brains.

Evolution of the Cetartiodactyla brain. Hippocampus of A) Minki Whale, B) Hippopotamus, C) Kudu.

 

 

message

To understand the evolution of the human brain it is important to carry out comparative neuroanatomical analysis on a wide variety of animal species using different techniques such as MRI/DTI, immunohistochemistry, isotropic fractionator etc. If you have a keen interest in brain research, especially neuroanatomy and want to learn more about brain evolution as well as the techniques to study it you are welcome to visit the lab .

 

references

Selected Peer Reviewed Publications:

  • Pillay S, Bhagwandin A, Bertelsen MF, Patzke N, Engler G, Engel AK, Manger PR. Regional distribution of cholinergic, catecholaminergic, serotonergic and orexinergic neurons in the brain of two carnivore species: The feliform banded mongoose (Mungos mungo) and the caniform domestic ferret (Mustela putorius furo). Chem Neuroanat. 14;82:12-28 (2017)
  • Ngwenya A, Patzke N, Manger PR, Herculano-Houzel S. Continued growth of the central nervous system without mandatory addition of neurons in the Nile crocodile (Crocodylus niloticus). Brain Behav Evol. 87(1):19-38. (2016)
  • Patzke N, Spocter MA, Karlsson KAE, Bertelsen MF, Haagensen M, Chawana R, Streicher S, Kaswera C, Gilissen E, Alagaili A, Mohammed OB, Reep RL, Bennett NC, Siegel JM, Ihunwo AO, Manger PR. In contrast to many other mammals, cetaceans have relatively small hippocampi that appear to lack adult neurogenesis. Brain Struct Funct. 220(1):361-83 (2015)
  • Patzke N, LeRoy A, Ngubane NW, Bennett NC, Medger K, Gravett N, Kyamakya CK, Gilissen E, Chawana R, Manger PR. The distribution of doublecortin immunopositive cells in the brains of four afrotherian mammals: hottentot golden mole (Amblysomus hottentotus), the rock hyrax (Procavia capensis), the eastern rock sengi (Elephantulus myurus) and the four-toed sengi (Petrodromus tetradactylus) Brain Behav Evol. 84(3):227-41 (2014)
  • Patzke N, Bertelsen MD, Manger PR. Nuclear organization of cholinergic, putative catecholaminergic, serotonergic and orexinergic systems in the brain of the Tasmanian devil (Sarcophilus harrisii). J Chem Neuroanat. 61?62:94?106 (2014)
  • Patzke N, Innocenti GM, Manger PR. The claustrum of the ferret: afferent and efferent connections to lower and higher order visual cortical areas. Front Syst Neurosci. doi: 0.3389/fnsys.2014.00031 (2014)
  • Patzke N, Olaleye O, Haagensen M, Hof PR, Ihunwo AO, Manger PR. Organization and chemical neuroanatomy of the African elephant (Loxodonta africana) hippocampus. Brain Struct Funct. 219:1587?1601 (2014)
  • Maseko BC, Patzke N, Fuxe K, Manger PR. Architectural Organization of the African Elephant diencephalon and brainstem. Brain Behav. Evolt. 82(2):83-128 (2013)
  • Ngwenya A, Patzke N, Spocter MA, Kruger JL, Dell LA, Chawana R, Mazengenya P, Billings BK, Olaleye O, Herculano-Houzel S, Manger PR. The continuously growing central nervous system of the Nile crocodile (Crocdylus niloticus). Anat Rec. 296(10):1489-500 (2013)
  • Manger PR, Spocter MA, Patzke N. The evolutions of large brain size in mammals ? the “over 700 g club quartet”. Brain Behav Evol. 82(1):68-78 (2013)
  • Dell LA, Patzke N, Bhagwandin A, Bux F, Fuxe K, Barber G, Siegel JM, Manger PR. Organization and number of orexinergic neurons in the hypothalamus of two species of Cetartiodactyla: A comparison of giraffe (Giraffa camelopardalis) and harbour porpoise (Phocoena phocoena). J Chem Neuroanat. 44: 98-109 (2012)

Book Chapters:

  • Patzke N, Manger PR. Some Comparative Aspects of the Mammalian Hippocampus. In (Editors: Kaas J, Striedter G, Krubitzer L, Herculano-Houzel S, Preuss T) Evolution of Nervous Systems 2e. vol. 2, Oxford: Elsevier, pp. 429?435 (2017)
  • Manger PR, Patzke N, Gravett N, Bennett NC. Unusual Cortical Lamination Patterns in the Sengis (Elephant Shrews) Do Not Appear to Influence the Presence of Cortical Minicolumns. In (Editors: Casanova MF, Opris I) Recent Advances on the Modular Organization of the Cortex, Chapter: 6, Springer, pp.81-96 (2015)