鷲尾健司 助教 / WASHIO, Kenji

かけがえのない地球、尊い生命

鷲尾健司 助教 /  WASHIO, Kenji

研究分野・テーマ・内容

研究分野 環境生物科学 分子生物学
研究テーマ 地球環境を保全する生命システムの理解

研究内容

地球全体を見渡した場合、生命はヒトの活動も含めて一つの大きなシステムとして機能しています。そのため、いかなる生き物も、この地球上に単独で存在することはできません。さらに、地球資源が決して永続的ではないことも、我々は既に悟っています。ヒトと地球がこれからも共存していくためには、まず自然が引き起こす現象をよく理解して、それらを保全する生き物の本質を読み取ることが必要です。そのため本研究室では、自然界に見出された様々な生物機能を利用して、環境をマネジメントする新規な手法を開発することにより、地球と人類にとって好ましい未来に向けた環境創造に寄与することを目的に研究しています。

メッセージ

現代を象徴するのに情報化社会、知識社会という言葉がよく使われます。このような流動的な社会では、物事の価値観はどんどん変わって行きます。大学院というと、頭の硬い専門家の集団であると思われがちですが、科学の現場においても、研究の本質は様々に変化してゆきます。特に生物学は、ゲノム科学や再生医学に代表されるように、近年飛躍的に進歩を遂げた学問の一つであると評されています。そのような状況では、科学者としても、色々と価値観を変えて研究に臨まなければなりません。その際には、創造性に富んだ思考力や、強力な個性が必要となります。そのため若い時分には、メディアや対人関係を通して、自分らしさを追求してもらいたいと思います。

参考文献・論文・著書

  • レイチェル・カーソン (著)、青樹簗一(訳) 「沈黙の春」 新潮文庫
  • 北海道大学大学院環境科学院編 「環境修復の科学と技術」 北海道大学出版会

nameWASHIO Kenji

Research subject

Specialized field

Seed biology of higher plants
Molecular signaling of plant hormones
Biosynthesis of marine halogenated products

Key words

・Plant science
・Seed biology
・Hormone signaling
・Major crops
・Rice, Oryza sativa L
・Marine bioactive products

Research subject

Our laboratory performs research to acquire basic knowledge of the biological functions in nature. The emphasis includes scientific discovery and problem solving the global issues in ecosystems.

Seed development and germination represent a critical stage in the life cycle of higher plants and is an important ecological and commercial trait. Previous studies revealed many components that are required for the maintenance of dormancy and germination of plant seeds, including light, temperature, and plant hormones. In particular, the transition between seed dormancy and germination is determined by a balance of internal signals, associated with ABA and GA. We combine postgenomics, physiology and molecular genetics approaches and attempt to provide an insight to the molecular processes underlying seed biology of Rice and Arabidopsis. If we could understand how different internal and external signals take place within plant seeds, it would enable more rapid and significant improvement of crop yield, a major focus of breeding program.

Because of the availability of halogen ions in seawater, marine organisms, including algae, produce a diverse collection of halogenated natural products, ranging from peptides, polyketides, indoles, terpenes, acetogenins, and phenols to volatile compounds. Bromide is frequently used by algae for the biosynthesis of halogenated products, although chlorine occurs in higher concentrations (19 g/L) than bromide (65 mg/L) in seawater. The reason remains unclear, however, bromide appears to be used to increase biological activity of secondary metabolites. Previous investigations revealed that vanadium-dependent bromoperoxidase (V-BrPO) is able to catalyze the halogenation of organic compounds in the presence of halide ions and H2O2. These enzymes have received increasing attentions due to their ability to halogenate a wide range of organic compounds of commercial and pharmaceutical interest. We are trying to clone or isolate V-BrPOs from marine red algaeLaurencia sp. and examine whether they could catalyze the bromination of biological precursors of marine natural products. These studies may benefit to the novel biogenesis of halogenated organic compounds, combined with chemical methodologies.

 

message

To understand biological functions and to utilize them into practical applications, we must understand many things from the biology of living organisms, including the establishment of species, the interactions of individuals, the community structure of ecosystems, and the influences with global climate changes. If you have any queries please feel free to contact us. We would be pleased to hear from you.

references

  • Holdsworth MJ et al. (2008) Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination. New Phytol, 179: 33-54.
  • Washio K (2003) Functional dissections between GAMYB and Dof transcription factors suggest a role for protein-protein associations in the gibberellin-mediated expression of the RAmy1A gene in the rice aleurone. Plant Physiol, 133: 850-63.
  • Washio K (2006) Common mechanisms regulating expression of rice aleurone genes that contribute to the primary response for gibberellin. Biochim Biophys Acta, 1759: 478-90.
  • Roongsawang N et al. (2010) Diversity of nonribosomal peptide synthetases involved in the biosynthesis of lipopeptide biosurfactants. Int J Mol Sci, 12: 141-72.
  • Cabrita MT et al. (2010) Halogenated compounds from marine algae.Mar Drugs, 8: 2301-17.