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the poor
first victim
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Lattice Scenario à la Kawamoto

4

Lattice: non-perturbative regularization
continuum limit (→ 0) in the end

← →

successful in...

• QCD (gauge theory)
• gravity

can be a candidate of the unified theory

... treating fermion is not so easy
what is fermions?

putting supersymmetry = understanding fermions

boson fermion

supersymmetry
(SUSY)
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Lattice simulation: a non-perturbative method for field
theory

• SUSY breaking
Why our world is not supersymmetric?

• gauge/string duality
tool for strong coupling gauge theory

• SUSY can be a symmetry of beyond Standard Model
worth developing simulation techniques

( will be found in LHC ?)

• “Experiment” for theoretical analysis
poster by Suzuki
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Formulation
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SUSY on lattice: impossible?(∵ Q ∼
p
P)

If N ≥ 2, it is possible!
(Models for SYM) Cohen-Kaplan-Katz-Ünsal, Sugino, Catterall,

D’Adda-I.K.-Kawamoto-Nagata,
Suzuki-Taniguchi,Kikukawa-Sugino,...
Takimi, Damgaard-Matsuura,...

• topological twist scalar Q on a site
• simulation: Catterall, Suzuki, Fukaya-I.K.-Suzuki-Takimi, I.K-Suzuki-Sugino

Two types

1. Keep the whole SUSY (at finite )
DKKN; Nagata; Arianos-D’Adda-Feo-Kawamoto-Saito; Kato-Sakamoto-So

2. partially at finite , the whole is (automatically)
restored in → 0 CKKU;Sugino

We confirm this scenario in the simulation
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Sugino, JHEP 01(2004)067
target: 2-dim N = (2,2) SYM

nilpotent Q (Twisted) SUSY Algebra, continuum

Q2 = δ
(gge)
ϕ Q2

0
= δ

(gge)

ϕ
{Q,Q0} = 2∂0 + 2δ

(gge)
A0

Action (dimensional reduction from 4-dim N = 1)

S =
1

g2

∫

d2 tr

¨

1

2
FMNFMN + ΨTCMDMΨ+ Ĥ2

«

ΨT = (ψ0, ψ1, χ,η/2) (under a suitable rep. of M)

AM = (gauge field, scalar)

Ĥ = aux. field
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Sugino, JHEP 01(2004)067
target: 2-dim N = (2,2) SYM

nilpotent Q (Twisted) SUSY Algebra, continuum

Q2 = δ
(gge)
ϕ Q2

0
= δ

(gge)

ϕ
{Q,Q0} = 2∂0 + 2δ

(gge)
A0

Q-exact action (continuum)

S = Q(. . . ) =
1

g2

∫

d2 tr
n1

4
F2
01
+DμϕDμϕ+

1

4
[ϕ,ϕ]2

+ ψμDμη+ · · · −
1

4
η[ϕ,η] + · · ·
o

QAμ = ψμ Qψμ = Dμϕ

Qϕ = 0 . . .
Q0A0 =



2
η Q0η = −2D0ϕ

Q0A1 = −χ Q0χ = D1ϕ

Q0ϕ = 0 . . .
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Sugino, JHEP 01(2004)067
target: 2-dim N = (2,2) SYM

nilpotent Q (Twisted) SUSY Algebra, continuum

Q2 = δ
(gge)
ϕ Q2

0
= δ

(gge)

ϕ
{Q,Q0} = 2∂0 + 2δ

(gge)
A0

Q-exact action (continuum)

S = Q(. . . ) =
1

g2

∫

d2 tr
n1

4
F2
01
+DμϕDμϕ+

1

4
[ϕ,ϕ]2
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1

4
η[ϕ,η] + · · ·
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QAμ = ψμ Qψμ = Dμϕ

Qϕ = 0 . . .
Q0A0 =



2
η Q0η = −2D0ϕ

Q0A1 = −χ Q0χ = D1ϕ

Q0ϕ = 0 . . .
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Sugino, JHEP 01(2004)067
target: 2-dim N = (2,2) SYM

nilpotent Q Lattice version

Q2 = δ
(gge)
ϕ

Q-exact action (lattice)

S = Q(. . . ) = S[U(,μ), ϕ(), ϕ(), H() bosons

η(), χ(), ψ0(), ψ1()] fermions

QU(, μ) = ψμ()U(, μ)

Qψμ() = ψμ()ψμ()

− (ϕ() − U(, μ)ϕ( + μ̂)U(, μ)−1)

Qϕ = 0

... U

ψμ, χ, η
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(continuum) (lattice)

• 4 supercharges: {Q0,Q1, Q̃,Q} Q
• R-symmetry: U(1)A, U(1)V , Z2 U(1)A

( U(1)A: a rotational symmetry on 2-3 plane )



Scenario

11

• Q-symmetry: exactly kept at finite 

• Other part of SUSY: broken at  6= 0, but will be restored
in → 0



Scenario

11

• Q-symmetry: exactly kept at finite 

• Other part of SUSY: broken at  6= 0, but will be restored
in → 0

We will confirm this scenario



12

What should we measure?
to check the restoration of SUSY
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• Q-symmetry: exactly kept at finite 

• Other part of SUSY: broken at  6= 0, but will be restored
in → 0 Is it true?

Possible problem

• perturbative power counting: non-pertubativitly...?

Powerful non-perturbative tool

• Simulation! : conservation of “super current”
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In which stage is SUSY broken?

14

Target: 2-dim N = (2,2) SYM, SU(2)
lattice model + scalar mass term

+ thermal B.C.

1. lattice artifact Our interest

2. scalar mass term
Partially Conserved Super Current (PCSC)

3. boundary condition: anti-periodic in temporal direction
for fermion (thermal)

no effect to local Ward-Takahashi identity

PCSC relation
(Separate the effect of lattice artifact)
satisfied the lattice artifact vanishes
not satisfied does not vanish
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4 supercharges: QA = {Q0,Q1, Q̃,Q}

Partially conserved supercurrent:

∂μJ
A
μ
= 0 ∂μJ

A
μ
= μ2/g2 YA (PCSC) μ: scalar mass

〈∂μJ A
μ
()XA(0)〉 −

μ2

g2
〈YA()XA(0)〉 = −δ2()〈QAXA(0)〉

measure
〈∂μJ A

μ
()XA(0)〉

〈YA()XA(0)〉
as a function of μ2/g2

YA = −2[C(2 tr(A2Ψ) + 3 tr(A3Ψ))]
A

∼ (scalar)× (fermion)

XA =
1

g2
[0(2 tr(A2Ψ) + 3 tr(A3Ψ))]

A
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Possible Divergences: No Problem

16

IF the 2 point funcs. have divergence...
O() lattice artifacts in J and Y

O() ×∞ can be finite
need to remove such extra effects
for  6= 0, no divergence, no problem

Furthermore,

• no operator mixing for J in 1-loop
• higher loops are suppressed because of super

renormalizability

Simple analysis is OK
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Simulation Result
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〈∂μJ A
μ
()XA(0)〉 − μ2

g2
〈YA()XA(0)〉 = −δ2()〈QAXA(0)〉

 0
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-80
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-40
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 0
 20
 40
 60
 80

20× 10, g = 0.1414, input μ2/g2 = 1.0, J for Q0
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〈∂μJ A
μ
()XA(0)〉 − μ2

g2
〈YA()XA(0)〉 = −δ2()〈QAXA(0)〉

 0
 10

 20 0

 10
-80
-60
-40
-20

 0
 20
 40
 60
 80

20× 10, g = 0.1414, input μ2/g2 = 1.0, J for Q0

fit
〈∂μJ A

μ
()XA(0)〉

〈YA()XA(0)〉
in this region

�

∼
μ2

g2

�
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〈∂μJ A
μ
()XA(0)〉

〈YA()XA(0)〉
∼
μ2

g2
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 0

 0.5

 1

 1.5

 2

 2.5

 0  0.5  1  1.5  2

µ2/g2

 0
 0.1
 0.2
 0.3

 0  0.1  0.2  0.3

〈∂μJ A
μ
()XA(0)〉

〈YA()XA(0)〉
∼
μ2

g2

PCSC is satisfied no SUSY breaking due to lattice artifact
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because of the flat direction in the potential

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0  10000  20000  30000  40000  50000

a2  tr
 |φ

|2

trajectory

12x6, ag=0.2357

cannot be used in the measurement
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〈∂μJ A
μ
()XA(0)〉

〈YA()XA(0)〉
∼
μ2

g2
+ δ() μ2/g2 = 1, anti-PBC

126
g = 0.2367

-3
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Q tilde
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〈∂μJ A
μ
()XA(0)〉

〈YA()XA(0)〉
∼
μ2

g2
+ δ() μ2/g2 = 1, PBC Too noisy!

126
g = 0.2367

-3

-2

-1

 0

 1

 2

 3

 0  0.2  0.4  0.6  0.8  1  1.2  1.4
x0

Q0
Q1
Q

Q tilde

Eventually, PCSC with scalar mass + anti-PBC
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• Computer: Riken Super Combined Cluster (RSCC)
• Algorithm: Rational Hybrid Monte Carlo (RHMC)

+ Multi-time step acceleration
• lattice size: 12× 6–30× 10
• g = 0.2357, 0.2, 0.1768, 0.1414
• 800–1,800 configurations
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Applications
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Choice of the scalar mass
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PCSC relation lattice simulation works

Application

• Observing spontaneous SUSY breaking

... before that,
flat direction? (How to “define” the theory)

• Define as an extrapolation of μ→ 0 we use this
• Small mass: μ < 1/L
• large NC

• (unstable)
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cf. I.K.-Suzuki-Sugino

• order parameter 〈H〉 = 1
2
〈QJ

(0)
0 〉 ({Q,Q0} = 2∂0)

• measure under thermal boundary condition
• extrapolate the scalar mass to zero
• extrapolate to zero temperature:

ground state energy density E

E = 〈H〉 at zero temperature

�

= 0 SUSY
6= 0 SUSY

Cf. No analytic result for this system
(maybe broken? a conjecture by Hori-Tong)
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Ground state energy is consistent with 0

Prel
iminar

y
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(e
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rg
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ns
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) 

g-2

(temperature)-1 g

E = β−b + c

 = 2.19+0.20−0.27
b = 2.48+0.14−0.09

c = 0.06+0.12−0.10
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Lattice simulation of 2-dim super Yang-Mills is now possible
Formulation with 1 nilpotent Q
whole SUSY is restored in the cont. limit (no lat. artifact)

• simulation: 2-dim N = (2,2) SYM, SU(2) (Sugino model)

• scalar mass term Partially Conserved Super Current
(PCSC) relation

Application

• Observing (no) spontaneous SUSY breaking

• ... (Poster by Suzuki)
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Thank you.
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