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Pioneering lattice calculations of glueball masses with Kenzo Ishikawa –

how do they compare with modern results?

Is N = ∞ physically relevant: i.e. is large-N confining and is N = 3 close

to N = ∞?

What string theory describes confining flux tubes in D = 3 and D = 4?

Strong coupling physics from the lattice – beyond QCD

1



Lattice – Preamble

Wilson 1974 ; Creutz 1979-80

• Euclidean R4 −→ hypercubic lattice on T 4 : finite problem

• comparing colour:

continuum infinitesimal: xµ • − • xµ + µ̂δx : Aµ(x) ∈ SU(N) Lie Algebra

−→
continuum finite: xµ • − − − • x′µ : P

n

e
R

x′

x
A.dx

o

∈ SU(N) group
xµ=anµ−→
finite on lattice: anµ • − −− • anµ + aµ̂ : Uµ(n) ∈ SU(N) group

i.e. SU(N) matrices Ul on each link l
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• gauge transformation: Uµ(n) → g(n)Uµ(n)g†(n+ µ̂)

−→
Tr

Q

l∈∂c Ul gauge invariant for any closed curve c

−→
so Z =

R
Q

l dUle
−βS where S =

P

p

˘

1 − 1
N

ReTrup

¯

and up is product links around the plaquette p is a suitable, although not

unique, SU(N) lattice gauge theory

• symmetries ensure that:
R

Q

l dUle
−βS a→0−→

R

DAe
− 4

g2

R

d4xT rFµνFµν
with β = 2N

g2(a)

a→0−→ ∞
and we vary the parameter β in order to vary the lattice spacing a

• Monte Carlo: Z−1
R

Q

l dUlΦ(U)e−βS = 1
n

n
P

I=1

Φ(UI) +O( 1√
n
)
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Calculating masses : Wilson, Coseners House, March 1981

• write the Euclidean correlator of an operator φ(t) :

〈φ†(t = ant)φ(0)〉 = 〈φ†e−Hantφ〉 =
X

i

|ci|2e−aEint t→∞
= |c|2e−mant

where am is lightest mass (in lattice units) with quantum numbers of φ. In

particular, take ~p = 0, colour singlet, and some particular JP C .

• in a numerical calculation, with finite errors, we need to be able to

calculate am at small t before the ‘signal’ has become too small

i.e. when |c|2 is large and φ is a good wavefunctional for the desired

ground state
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• so generalise this to a variational calculation over a vector space Vφ

spanned by some convenient operators {φi; i = 1, ..., n} of the desired

quantum numbers:

〈ψ0
†(t0)ψ0(0)〉 = max

φ∈Vφ

〈φ†(t0)φ(0)〉 = max
φ∈Vφ

〈φ†e−Ht0φ〉

where t0 is some convenient value of t. Then ψ0 is our best variational

estimate for the true eigenfunctional of the ground state (with these

quantum numbers). We can now use 〈ψ0
†(t)ψ0(0)〉 to obtain our best

estimate of the ground state mass.

• generalise this in an obvious way to calculating excited state energies
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−→ the first glueball lattice calculations ....

• The glueball mass spectrum in QCD: First results of a lattice Monte Carlo

calculation.

K. Ishikawa, M. Teper (DESY), G. Schierholz (Hamburg U.)

DESY 81/089, (Received 18 January 1982) Phys.Lett.B110:399,1982

TOPCITE = 50+

• Monte Carlo estimates of the SU(2) mass gap.

B. Berg, A. Billoire (CERN), C. Rebbi (Brookhaven)

BNL-30826, Dec 1981. (Received 8 February 1982) Annals Phys.142:185-215,1982,

Addendum-ibid.146:470-472,1983.

TOPCITE = 50+

• On the masses of the glueballs in pure SU(2) lattice gauge theory

M. Falcioni, E. Marinari, M. L. Paciello, G. Parisi, F. Rapuano, B. Taglienti and

Zhang Yi-Cheng (INFN, Roma)

ROME-277-1981, Dec 1981. (Received 6 January 1982) Phys.Lett.B110:295,1982.

TOPCITE = 50+
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How do these pioneering calculations

compare to recent calculations of the continuum limit?

• to obtain the continuum limit from masses that are in lattice units and

are distorted by the finite lattice cutoff, take dimensionless mass ratios and

extrapolate with an O(a2) correction, Symanzik early-80’s , e.g.

am(a)

a
√
σ(a)

=
m(a)√
σ(a)

=
m(0)√
σ(0)

+ c0a
2σ +O(a4)

where we choose to use the square root of the string tension σ as one of the

masses (here c0 is a power series in the bare coupling, but this logarithmic

variation with a can usually be ignored)
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SU(3) : K. Ishikawa et al, PL 116B (1982) 429 ; B.Lucini et al: hep-lat/0404008

a2σ

mG√
σ

0.160.120.080.040

7

6

5

4

3

2

1

0

O(a2) extrapolations to a = 0 :

(•) m
0++√

σ
= 3.47(4) − 5.52(75)a2σ ; (◦) m

2++√
σ

= 4.93(5) − 0.61(1.36)a2σ
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−→ the only glueball mass with small errors is exactly on the modern

calculations!

Note:

in 1982 we used a
√
σ values from other people’s papers, and these values

were in fact off by about 40% so that in fact:
m

0++√
σ

σ:1982≃ 1.8
σ:2004−→ 2.5

and, as we see, lattice corrections are substantial, so that:
m

0++√
σ

a∼0.4/
√

σ≃ 2.5
a→0−→ 3.5

−→
m0++ ≃ 3.5

√
σ ≃ 1.6GeV

which fits in with the three observed JP C = 0++ flavour ’singlet’ states

f0(1350), f0(1500), f0(1700) coming from mixing of nearby uu+ dd, ss and

glueball states
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our first papers developed all the main technical ingredients of modern

calculations, except for one major problem :

K. Ishikawa etal, Z. Phys. C 16 (1982) 69

if we use simple Wilson loops of various sizes, then

the overlap onto ground state ։ 0 as a→ 0

and the ‘signal’ is lost in the ‘noise’ before we can identify the mass of the

ground state

e.g. take the smallest a in our plot i.e.

SU(3), 324, a ≃ 0.046 ‘fm’

and use the simple plaquette for the glueball operator

−→
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using the simple plaquette for the glueball operator:

nt

C(nt)

1612840

1

0.1

0.01

0.001

0.0001

C(t) ∝ e−amnt at larger t = ant ?!
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this necessitated the one qualitative improvement to our original

calculations (apart from more powerful computing!)

produce operators that are ‘smooth’ on physical length scales by the

iterative ‘smearing’ and ‘blocking’ of the lattice gauge fields used in

constructing appropriate Wilson loops

−→
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best blocked/smeared glueball operator

nt

C(nt)

1612840

1

0.1

0.01

0.001

C(t = ant)
t↑≃ |c|2e−mant ⇒ fit : am0++ = 0.330(7)
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Our glueball papers in the early 1980’s:

The glueball mass spectrum in QCD: first results of a lattice Monte Carlo calculation.

K. Ishikawa, G. Schierholz, M. Teper

Phys.Lett.B110:399,1982.

Cited 88 times

SU(3) lattice Monte Carlo calculation of the glueball mass spectrum.

K. Ishikawa, G. Schierholz, M. Teper

Phys.Lett.B116:429,1982.

Cited 69 times

Renormalization group behavior of 0+ and 2+ glueball masses in SU(2) lattice gauge

theory.

K. Ishikawa, G. Schierholz, M. Teper

Z.Phys.C16:69,1982.

Cited 11 times

Prediction of low lying oddballs in lattice QCD.

K. Ishikawa, A. Sato, G. Schierholz, M. Teper

Phys.Lett.B120:387,1983.

Cited 26 times
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On investigating the structure of hadrons: lattice Monte Carlo measurements of color

magnetic and electric fields and the topological charge density inside glueballs.

K. Ishikawa (CCNY), G. Schierholz, H. Schneider, M. Teper (LAPP)

Nucl.Phys.B227:221,1983.

Cited 17 times

Calculation of the glueball mass spectrum of SU(2) and SU(3) non-Abelian lattice

gauge theories 1. Introduction and SU(2).

K. Ishikawa, G. Schierholz, M. Teper

Z.Phys.C19:327,1983.

Cited 40 times

On the topological structure of the vacuum in SU(2) and SU(3) lattice gauge theories.

K. Ishikawa, G. Schierholz, H. Schneider, M. Teper

Phys.Lett.B128:309,1983.

Cited 39 times

Calculation of the glueball mass spectrum of SU(2) and SU(3) non-Abelian lattice

gauge theories 2. SU(3).

K. Ishikawa, A. Sato, G. Schierholz, M. Teper

Z.Phys.C21:167,1983.

Cited 61 times
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Full QCD:

• PACS-CS Collaboration:

Y. Kuramashi, Plenary Talk at Lattice 2008, arXiv:0811.2630

S. Aoki et al., arXiv:0807.1661

• S. Durr et al., Science 322 (2008) 1224
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Large N

’t Hooft 1974

• Consider SU(N) as a power series in 1/N around SU(∞)

• If:

SU(N) is confining ∀N and SU(3) is close to SU(∞)

then there is a lot of mysterious strong-interaction physics whose origins

one can understand by taking N → ∞ while keeping g2N fixed

’t Hooft, Coleman, Witten, Veneziano, Dahen, Manohar...

• In a confining phase at N = ∞, there are no interactions between colour

singlet states, no decays, no mixing – but still the theory has proved too

difficult to solve
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• Since 1997 Maldacena new hope of a solution at N = ∞ has been

provided by the strong-weak coupling gauge-gravity dualities and this has

provided new motivation for numerical calculations at large N

• A simple and effective strategy is to repeat the calculations for larger N

and compare the results, i.e. SU(2), SU(3), SU(4), SU(5), SU(6), ...

• Since the leading correction in a theory with just adjoint fields is

expected to be O(1/N2), going to say N = 8 should be more than enough,

and use
m(N)√
σ(N)

=
m(∞)√
σ(∞)

+
c

N2
+O

„

1

N4

«
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Glueball mass spectrum: large-N limit

B.Lucini, M.Teper, U.Wenger: hep-lat/0404008

1/N2

m√
σ

0.250.20.150.10.050

8

7

6

5

4

3

2

1

0

(•) 0++; (◦) 2++ −→ SU(3) is ‘close to’ SU(∞) for many quantities
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SU(6) : energy of flux loop closed around a spatial torus

H. Meyer, M. Teper: hep-lat/0411039

l
√
σ

am(l)

654321

1.5

1

0.5

0

−→ linear confinement: am(l) ≃ σl − π
3l
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g2N fixed as N → ∞ ? MT, Lat 08 , arXiv:0812.0085

bare coupling (Parisi): g2
I (a) = g2

up
= 2N

β
1

up

µ = 1
a
√

σ

g2
I (µ)N

121086420

6.5

5.5

4.5

3.5

SU(2) ◦ ; SU(3) ◦; SU(4) • ; SU(6) ◦ ; SU(8) •
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• from a careful analysis we can obtain:

C. Allton, M. Teper, A. Trivini, arXiv:0803.1092

ΛMS√
σ

= 0.503(2)(40) +
0.33(3)(3)

N2

• to go beyond a bare coupling to a genuine continuum running coupling,

one can use e.g. the SF coupling scheme, giving :

B. Lucini, G. Moraitis, arXiv:0805.2913, 0710.1533

ΛMS√
σ

= 0.528(40) +
0.18(36)

N2

QUESTION: does the SF coupling acquire non-perturbative jumps at the

Narayanan-Neuberger N = ∞ phase transitions?
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QCD at N = ∞

Note : QCD
N=∞
= quenched QCD

• L. Del Debbio, B. Lucini, A. Patella and C. Pica: arXiv:0712:3036.

• G. Bali and F. Bursa, arXiv:0806:2278; arXiv:0708:3427.

Some questions:

Scalar mesons as N → ∞ : do the ≤ 1GeV states disappear?

The scalar nonet and the place of lightest scalar glueball?

Flavour singlet tensor and pseudoscalar mesons and glueballs?

Excited states stable −→ Regge trajectories?

Excited states stable −→ clean meson excitation spectrum.

SU(2nf ) baryon (Dashen-Manohar) symmetry as N → 3.
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G. Bali and F. Bursa, arXiv:0806:2278

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 0  1  2  3  4  5  6  7

m
ρ/

σ1/
2

mπ
2/σ

SU(2)
SU(3)
SU(4)
SU(6)

 1.55

 1.6

 1.65

 1.7

 1.75

 0  0.05  0.1  0.15  0.2  0.25

m
ρ(

0)
/σ

1/
2

1/N2

mρ versus mπ (left); mρ for mq = 0 versus 1/N2 (right).
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Del Debbio et al: lim
N→∞

mρ√
σ

= 1.627(10) ; a
√
σ = 0.335

+

Bali and Bursa: lim
N→∞

mρ√
σ

= 1.688(25) ; a
√
σ = 0.209

−→
lim

N→∞,a→0

mρ√
σ

= 1.79(5)

versus, in the real world :
mρ√

σ
≃ 770MeV

440MeV
≃ 1.75

−→
N = 3 is ‘close to’ N = ∞ for full QCD ...
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Flux tubes as strings

↔

Confining flux tubes in SU(N) gauge theories

and their effective string theory description

Athenodorou, Bringoltz, MT: arXiv:0812.0334; 0802.1490; 0709.0693

• Veneziano amplitude

• ’t Hooft large-N – genus diagram expansion

• Polyakov action

and much more recently

• Maldacena ... AdS/CFT/QCD ...

This has been an area of active and continuing research on the lattice since

1980 ...
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focus on spectrum of flux tubes that

are closed around a spatial torus of length l :

• flux localised in ‘tubes’ ∀l ≥ lc = 1/Tc

• at l = lc there is a phase transition: first order for N ≥ 3 in D = 4 and

for N ≥ 4 in D = 3

• so may have a simple string description of the closed string spectrum for

all possible lengths (large N)

• most plausible at N → ∞ where complications such as mixing, e.g string

→ string + glueball, go away

the static potential V (r) describes the transition in r between UV

(Coulomb potential) and IF (flux tubes) physics; potentially of great

interest as N → ∞.
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Closed flux tube in D=2+1 and SU(5)

l
√

σ

E0(l)√
σ

54321

6

5

4

3

2

1

0

Luscher: (...) E0(l) = σl − π
6l

Nambu-Goto: (−) E0(l) = σl
`

1 − π
3σl2

´ 1
2
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How well do Luscher and Nambu-Goto work here?

1 1.5 2 2.5 3 3.5 4 4.5
0.5

1

1.5

2

C
 e

ff(l)

l√σ

 

 

2 : ceff from Luscher: E0(l) = σl − ceff π

6l

◦ : ceff from Nambu-Goto: E0(l) = σl
“

1 − ceff π

3σl2

” 1
2
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more accurate for SU(2) : lc
√
σ ≃ 0.94

l
√

σ

ceff

4.543.532.521.51

2

1.5

1

0.5

◦ : ceff from Luscher

• : ceff from Nambu-Goto
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SU(3) : closed string spectrum for a
√
σ = 0.17395(7) ; lc

√
σ ≃ 1.0

l
√

σ

E√
σ

654321

10

8

6

4

2

0

- Nambu-Goto: (σ from ground state); × : +ve parity; ◦ : -ve parity
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closed string spectrum - Nambu-Goto vs Luscher

l
√

σ

E√
σ

654321

12

10

8

6

4

2

0

— Nambu-Goto : En = σl
q

1 + 8π
σl2

`

n − 1
24

´

...... Luscher 1980,2004: En = σl + 4π
l

“

n − D−2
24

”

− 8π2

σ l3

`

n − 1
24

´2
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−→

• the right starting point for understanding confining flux tubes is

the free Nambu-Goto string theory rather than some large-l

truncation thereof

• we have seen that even very short flux tubes – really ‘blobs’ not

‘tubes’ – know that they are really strings: this is not natural in a

generic ‘Nielsen-Olesen vortex’ picture, but it is what happens in

gauge-gravity duals.

• what are the inter-phonon interactions?

where are the massive (e.g. breathing) modes?
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What about D=3+1? [ SU(3) ; β = 6.0625 ; lc
√

σ ∼ 1.6 ]

◦ Nambu-Goto; • Luscher

l
√

σ

ceff

43.532.521.5

2

1.5

1

0.5

20 × 202 × 16 , 4.5M sweeps ; 16 × 162 × 16 , 6.0M sweeps ; 12 × 162 × 24 , 5.0M sweeps

10 × 202 × 36 , 2.0M sweeps ; 9 × 322 × 48 , 0.6M sweeps
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spectrum of excited states (preliminary) ...

lines Nambu-Goto: only parameter is σ

l
√

σ

E/
√

σ

3.532.521.5

8

7

6

5

4

3

2

1

0

•q = 0 ground state: J = 0 •q = 1 ground state: J = 1 •q = 0 excited state: J = 0

•q = 0 excited state: J = 2 ◦q = 1 excited state: J = 1
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What is today’s big lattice problem?

↔

What is today’s big physics problem?

↔

LHC and BSM

−→

strong coupling BSM physics

e.g. near conformal ETC or SUSY
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