```
    From glueballs to large N:
strong coupling physics from the lattice
Michael Teper (Oxford)
    Sapporo '09
```

Pioneering lattice calculations of glueball masses with Kenzo Ishikawa how do they compare with modern results?

Is $N=\infty$ physically relevant: i.e. is large- N confining and is $N=3$ close to $N=\infty$?

What string theory describes confining flux tubes in $D=3$ and $D=4$?

Strong coupling physics from the lattice - beyond QCD

> Lattice - Preamble
> Wilson 1974 ; Creutz 1979-80

- Euclidean $R^{4} \longrightarrow$ hypercubic lattice on $T^{4} \quad: \quad$ finite problem
- comparing colour:
continuum infinitesimal: $x_{\mu} \bullet-\bullet x_{\mu}+\hat{\mu} \delta x: A_{\mu}(x) \in \mathrm{SU}(\mathrm{N})$ Lie Algebra
continuum finite: $x_{\mu} \bullet---\bullet x_{\mu}^{\prime}: P\left\{e^{\int_{x}^{x^{\prime}} A \cdot d x}\right\} \in \mathrm{SU}(\mathrm{N})$ group ${ }^{x_{\mu}=a n_{\mu}}$
finite on lattice: $a n_{\mu} \bullet---\bullet a n_{\mu}+a \hat{\mu} \quad: \quad U_{\mu}(n) \in \mathrm{SU}(\mathrm{N})$ group
i.e. $\operatorname{SU}(\mathrm{N})$ matrices U_{l} on each link l
- gauge transformation: $U_{\mu}(n) \rightarrow g(n) U_{\mu}(n) g^{\dagger}(n+\hat{\mu})$
$\operatorname{Tr} \prod_{l \in \partial c} U_{l}$ gauge invariant for any closed curve c
so $\quad Z=\int \prod_{l} d U_{l} e^{-\beta S} \quad$ where $\quad S=\sum_{p}\left\{1-\frac{1}{N} \operatorname{ReTr} u_{p}\right\}$
and u_{p} is product links around the plaquette p is a suitable, although not unique, $\mathrm{SU}(N)$ lattice gauge theory
- symmetries ensure that:
$\int \prod_{l} d U_{l} e^{-\beta S} \quad \xrightarrow{a \rightarrow 0} \int D A e^{-\frac{4}{g^{2}} \int d^{4} x \operatorname{Tr} F_{\mu \nu} F_{\mu \nu}}$ with $\beta=\frac{2 N}{g^{2}(a)} \xrightarrow{a \rightarrow 0} \infty$ and we vary the parameter β in order to vary the lattice spacing a
- Monte Carlo: $\quad Z^{-1} \int \prod_{l} d U_{l} \Phi(U) e^{-\beta S}=\frac{1}{n} \sum_{I=1}^{n} \Phi\left(U^{I}\right)+O\left(\frac{1}{\sqrt{n}}\right)$

Calculating masses : Wilson, Coseners House, March 1981

- write the Euclidean correlator of an operator $\phi(t)$:

$$
\left\langle\phi^{\dagger}\left(t=a n_{t}\right) \phi(0)\right\rangle=\left\langle\phi^{\dagger} e^{-H a n_{t}} \phi\right\rangle=\sum_{i}\left|c_{i}\right|^{2} e^{-a E_{i} n_{t}} \stackrel{t \rightarrow \infty}{=}|c|^{2} e^{-m a n_{t}}
$$

where $a m$ is lightest mass (in lattice units) with quantum numbers of ϕ. In particular, take $\vec{p}=0$, colour singlet, and some particular $J^{P C}$.

- in a numerical calculation, with finite errors, we need to be able to calculate $a m$ at small t before the 'signal' has become too small i.e. when $|c|^{2}$ is large and ϕ is a good wavefunctional for the desired ground state
- so generalise this to a variational calculation over a vector space V_{ϕ} spanned by some convenient operators $\left\{\phi_{i} ; i=1, \ldots, n\right\}$ of the desired quantum numbers:

$$
\left\langle\psi_{0}^{\dagger}\left(t_{0}\right) \psi_{0}(0)\right\rangle=\max _{\phi \in V_{\phi}}\left\langle\phi^{\dagger}\left(t_{0}\right) \phi(0)\right\rangle=\max _{\phi \in V_{\phi}}\left\langle\phi^{\dagger} e^{-H t_{0}} \phi\right\rangle
$$

where t_{0} is some convenient value of t. Then ψ_{0} is our best variational estimate for the true eigenfunctional of the ground state (with these quantum numbers). We can now use $\left\langle\psi_{0}{ }^{\dagger}(t) \psi_{0}(0)\right\rangle$ to obtain our best estimate of the ground state mass.

- generalise this in an obvious way to calculating excited state energies
\longrightarrow the first glueball lattice calculations
- The glueball mass spectrum in QCD: First results of a lattice Monte Carlo calculation.
K. Ishikawa, M. Teper (DESY), G. Schierholz (Hamburg U.)

DESY 81/089, (Received 18 January 1982) Phys.Lett.B110:399,1982
TOPCITE $=50+$

- Monte Carlo estimates of the $\mathrm{SU}(2)$ mass gap.
B. Berg, A. Billoire (CERN), C. Rebbi (Brookhaven)

BNL-30826, Dec 1981. (Received 8 February 1982) Annals Phys.142:185-215,1982, Addendum-ibid.146:470-472,1983.
TOPCITE $=50+$

- On the masses of the glueballs in pure $\mathrm{SU}(2)$ lattice gauge theory
M. Falcioni, E. Marinari, M. L. Paciello, G. Parisi, F. Rapuano, B. Taglienti and Zhang Yi-Cheng (INFN, Roma)
ROME-277-1981, Dec 1981. (Received 6 January 1982) Phys.Lett.B110:295,1982. TOPCITE $=50+$

How do these pioneering calculations compare to recent calculations of the continuum limit?

- to obtain the continuum limit from masses that are in lattice units and are distorted by the finite lattice cutoff, take dimensionless mass ratios and extrapolate with an $O\left(a^{2}\right)$ correction, Symanzik early-80's, e.g.

$$
\frac{a m(a)}{a \sqrt{ } \sigma(a)}=\frac{m(a)}{\sqrt{ } \sigma(a)}=\frac{m(0)}{\sqrt{ } \sigma(0)}+c_{0} a^{2} \sigma+O\left(a^{4}\right)
$$

where we choose to use the square root of the string tension σ as one of the masses (here c_{0} is a power series in the bare coupling, but this logarithmic variation with a can usually be ignored)
$\operatorname{SU}(3): \quad$ K. Ishikawa et al, PL 116B (1982) 429 ; B.Lucini et al: hep-lat/0404008

$O\left(a^{2}\right)$ extrapolations to $a=0$:
(•) $\frac{m_{0++}}{\sqrt{ } \sigma}=3.47(4)-5.52(75) a^{2} \sigma \quad ; \quad$ (०) $\frac{m_{2++}}{\sqrt{ } \sigma}=4.93(5)-0.61(1.36) a^{2} \sigma$
\longrightarrow the only glueball mass with small errors is exactly on the modern calculations!

Note:
in 1982 we used $a \sqrt{ } \sigma$ values from other people's papers, and these values were in fact off by about 40% so that in fact:

$$
\frac{m_{0++}}{\sqrt{ } \sigma} \stackrel{\sigma: 1982}{\sim} 1.8 \xrightarrow{\sigma: 2004} 2.5
$$

and, as we see, lattice corrections are substantial, so that:

$$
\frac{m_{0++}}{\sqrt{ } \sigma} \stackrel{a \sim 0.4 / \sqrt{ } \sigma}{\simeq} 2.5 \xrightarrow{a \rightarrow 0} 3.5
$$

$$
m_{0^{++}} \simeq 3.5 \sqrt{ } \sigma \simeq 1.6 \mathrm{GeV}
$$

which fits in with the three observed $J^{P C}=0^{++}$flavour 'singlet' states $f_{0}(1350), f_{0}(1500), f_{0}(1700)$ coming from mixing of nearby $u \bar{u}+d \bar{d}, s \bar{s}$ and glueball states
our first papers developed all the main technical ingredients of modern calculations, except for one major problem :
K. Ishikawa etal, Z. Phys. C 16 (1982) 69
if we use simple Wilson loops of various sizes, then
the overlap onto ground state $\rightarrow 0$ as $a \rightarrow 0$
and the 'signal' is lost in the 'noise' before we can identify the mass of the ground state
e.g. take the smallest a in our plot i.e.
$\mathrm{SU}(3), 32^{4}, a \simeq 0.046$ ' fm '
and use the simple plaquette for the glueball operator
using the simple plaquette for the glueball operator:

$C(t) \propto e^{-a m n_{t}}$ at larger $t=a n_{t} ?!$
this necessitated the one qualitative improvement to our original calculations (apart from more powerful computing!)
produce operators that are 'smooth' on physical length scales by the iterative 'smearing' and 'blocking' of the lattice gauge fields used in constructing appropriate Wilson loops
best blocked/smeared glueball operator

Our glueball papers in the early 1980's:

The glueball mass spectrum in QCD: first results of a lattice Monte Carlo calculation.
K. Ishikawa, G. Schierholz, M. Teper

Phys.Lett.B110:399,1982.
Cited 88 times
$\mathrm{SU}(3)$ lattice Monte Carlo calculation of the glueball mass spectrum.
K. Ishikawa, G. Schierholz, M. Teper

Phys.Lett.B116:429,1982.
Cited 69 times
Renormalization group behavior of $0+$ and $2+$ glueball masses in $\operatorname{SU}(2)$ lattice gauge theory.
K. Ishikawa, G. Schierholz, M. Teper
Z.Phys.C16:69,1982.

Cited 11 times
Prediction of low lying oddballs in lattice QCD.
K. Ishikawa, A. Sato, G. Schierholz, M. Teper

Phys.Lett.B120:387,1983.
Cited 26 times

On investigating the structure of hadrons: lattice Monte Carlo measurements of color magnetic and electric fields and the topological charge density inside glueballs.
K. Ishikawa (CCNY), G. Schierholz, H. Schneider, M. Teper (LAPP)

Nucl.Phys.B227:221,1983.
Cited 17 times
Calculation of the glueball mass spectrum of $\operatorname{SU}(2)$ and $\mathrm{SU}(3)$ non-Abelian lattice gauge theories 1. Introduction and $\mathrm{SU}(2)$.
K. Ishikawa, G. Schierholz, M. Teper
Z.Phys.C19:327,1983.

Cited 40 times
On the topological structure of the vacuum in $\mathrm{SU}(2)$ and $\mathrm{SU}(3)$ lattice gauge theories. K. Ishikawa, G. Schierholz, H. Schneider, M. Teper

Phys.Lett.B128:309,1983.
Cited 39 times
Calculation of the glueball mass spectrum of $\operatorname{SU}(2)$ and $\operatorname{SU}(3)$ non-Abelian lattice gauge theories 2. SU(3).
K. Ishikawa, A. Sato, G. Schierholz, M. Teper
Z.Phys.C21:167,1983.

Cited 61 times

Full QCD:

- PACS-CS Collaboration:
Y. Kuramashi, Plenary Talk at Lattice 2008, arXiv:0811.2630
S. Aoki et al., arXiv:0807.1661
- S. Durr et al., Science 322 (2008) 1224

Large N
 't Hooft 1974

- Consider $\operatorname{SU}(N)$ as a power series in $1 / N$ around $\operatorname{SU}(\infty)$
- If:
$\operatorname{SU}(N)$ is confining $\forall N$ and $\operatorname{SU}(3)$ is close to $\mathrm{SU}(\infty)$ then there is a lot of mysterious strong-interaction physics whose origins one can understand by taking $N \rightarrow \infty$ while keeping $g^{2} N$ fixed 't Hooft, Coleman, Witten, Veneziano, Dahen, Manohar...
- In a confining phase at $N=\infty$, there are no interactions between colour singlet states, no decays, no mixing - but still the theory has proved too difficult to solve
- Since 1997 Maldacena new hope of a solution at $N=\infty$ has been provided by the strong-weak coupling gauge-gravity dualities and this has provided new motivation for numerical calculations at large N
- A simple and effective strategy is to repeat the calculations for larger N and compare the results, i.e. $\mathrm{SU}(2), \mathrm{SU}(3), \mathrm{SU}(4), \mathrm{SU}(5), \mathrm{SU}(6), \ldots$
- Since the leading correction in a theory with just adjoint fields is expected to be $O\left(1 / N^{2}\right)$, going to say $N=8$ should be more than enough, and use

$$
\frac{m(N)}{\sqrt{ } \sigma(N)}=\frac{m(\infty)}{\sqrt{ } \sigma(\infty)}+\frac{c}{N^{2}}+O\left(\frac{1}{N^{4}}\right)
$$

Glueball mass spectrum: large-N limit

B.Lucini, M.Teper, U.Wenger: hep-lat/0404008

$(\bullet) 0^{++} ;(\circ) 2^{++} \longrightarrow \quad \mathrm{SU}(3)$ is 'close to' $\mathrm{SU}(\infty)$ for many quantities
$\mathrm{SU}(6)$: energy of flux loop closed around a spatial torus
H. Meyer, M. Teper: hep-lat/0411039

$\longrightarrow \quad$ linear confinement: $a m(l) \simeq \sigma l-\frac{\pi}{3 l}$

$$
g^{2} N \text { fixed as } N \rightarrow \infty ?
$$

bare coupling (Parisi): $g_{I}^{2}(a)=\frac{g^{2}}{u_{p}}=\frac{2 N}{\beta} \frac{1}{u_{p}}$

$\mathrm{SU}(2) \circ ; \mathrm{SU}(3) \circ ; \mathrm{SU}(4) \bullet ; \operatorname{SU}(6) \circ ; \mathrm{SU}(8) \bullet$

- from a careful analysis we can obtain:
C. Allton, M. Teper, A. Trivini, arXiv:0803.1092

$$
\frac{\Lambda_{\overline{M S}}}{\sqrt{ } \sigma}=0.503(2)(40)+\frac{0.33(3)(3)}{N^{2}}
$$

- to go beyond a bare coupling to a genuine continuum running coupling, one can use e.g. the SF coupling scheme, giving :
B. Lucini, G. Moraitis, arXiv:0805.2913, 0710.1533

$$
\frac{\Lambda_{\overline{M S}}}{\sqrt{ } \sigma}=0.528(40)+\frac{0.18(36)}{N^{2}}
$$

QUESTION: does the SF coupling acquire non-perturbative jumps at the Narayanan-Neuberger $N=\infty$ phase transitions?

$$
\mathrm{QCD} \text { at } N=\infty
$$

Note: $\mathrm{QCD} \stackrel{N \equiv \infty}{=}$ quenched QCD

- L. Del Debbio, B. Lucini, A. Patella and C. Pica: arXiv:0712:3036.
- G. Bali and F. Bursa, arXiv:0806:2278; arXiv:0708:3427.

Some questions:
Scalar mesons as $N \rightarrow \infty$: do the $\leq 1 \mathrm{GeV}$ states disappear?
The scalar nonet and the place of lightest scalar glueball?
Flavour singlet tensor and pseudoscalar mesons and glueballs?
Excited states stable \longrightarrow Regge trajectories?
Excited states stable \longrightarrow clean meson excitation spectrum.
$\mathrm{SU}\left(2 n_{f}\right)$ baryon (Dashen-Manohar) symmetry as $N \rightarrow 3$.
G. Bali and F. Bursa, arXiv:0806:2278

Del Debbio et al: $\lim _{N \rightarrow \infty} \frac{m_{\rho}}{\sqrt{\sigma}}=1.627(10) ; \quad a \sqrt{\sigma}=0.335$ $+$
Bali and Bursa: $\lim _{N \rightarrow \infty} \frac{m_{\rho}}{\sqrt{\sigma}}=1.688(25) \quad ; \quad a \sqrt{\sigma}=0.209$

$$
\lim _{N \rightarrow \infty, a \rightarrow 0} \frac{m_{\rho}}{\sqrt{\sigma}}=1.79(5)
$$

versus, in the real world :

$$
\frac{m_{\rho}}{\sqrt{\sigma}} \simeq \frac{770 \mathrm{MeV}}{440 \mathrm{MeV}} \simeq 1.75
$$

$$
N=3 \text { is 'close to' } N=\infty \text { for full QCD } \ldots
$$

Flux tubes as strings

Confining flux tubes in $\operatorname{SU}(N)$ gauge theories and their effective string theory description

Athenodorou, Bringoltz, MT: arXiv:0812.0334; 0802.1490; 0709.0693

- Veneziano amplitude
- 't Hooft large- N - genus diagram expansion
- Polyakov action
and much more recently
- Maldacena ... AdS/CFT/QCD ...

This has been an area of active and continuing research on the lattice since 1980 ...
focus on spectrum of flux tubes that are closed around a spatial torus of length l :

- flux localised in 'tubes' $\forall l \geq l_{c}=1 / T_{c}$
- at $l=l_{c}$ there is a phase transition: first order for $N \geq 3$ in $D=4$ and for $N \geq 4$ in $D=3$
- so may have a simple string description of the closed string spectrum for all possible lengths (large N)
- most plausible at $N \rightarrow \infty$ where complications such as mixing, e.g string \rightarrow string + glueball, go away
the static potential $V(r)$ describes the transition in r between UV (Coulomb potential) and IF (flux tubes) physics; potentially of great interest as $N \rightarrow \infty$.

Closed flux tube in $\mathrm{D}=2+1$ and $\mathrm{SU}(5)$

Luscher: $\quad(\ldots) \quad E_{0}(l)=\sigma l-\frac{\pi}{6 l}$
Nambu-Goto: $\quad(-) \quad E_{0}(l)=\sigma l\left(1-\frac{\pi}{3 \sigma l^{2}}\right)^{\frac{1}{2}}$

How well do Luscher and Nambu-Goto work here?

$\square: c_{e f f}$ from Luscher: $E_{0}(l)=\sigma l-\frac{c_{e f f} \pi}{6 l}$
○ : $c_{e f f}$ from Nambu-Goto: $E_{0}(l)=\sigma l\left(1-\frac{c_{e f f} \pi}{3 \sigma l^{2}}\right)^{\frac{1}{2}}$
more accurate for $\mathrm{SU}(2): l_{c} \sqrt{ } \sigma \simeq 0.94$

- : $c_{\text {eff }}$ from Luscher
- : $c_{e f f}$ from Nambu-Goto
$\mathrm{SU}(3)$: closed string spectrum for $a \sqrt{ } \sigma=0.17395(7) ; \quad l_{c} \sqrt{ } \sigma \simeq 1.0$

- Nambu-Goto: (σ from ground state); \times : +ve parity; ○:-ve parity
closed string spectrum - Nambu-Goto vs Luscher

- Nambu-Goto : $E_{n}=\sigma l \sqrt{1+\frac{8 \pi}{\sigma l^{2}}\left(n-\frac{1}{24}\right)}$
...... Luscher 1980,2004: $E_{n}=\sigma l+\frac{4 \pi}{l}\left(n-\frac{D-2}{24}\right)-\frac{8 \pi^{2}}{\sigma l^{3}}\left(n-\frac{1}{24}\right)^{2}$
- the right starting point for understanding confining flux tubes is the free Nambu-Goto string theory rather than some large-l truncation thereof
- we have seen that even very short flux tubes - really 'blobs' not 'tubes' - know that they are really strings: this is not natural in a generic 'Nielsen-Olesen vortex' picture, but it is what happens in gauge-gravity duals.
- what are the inter-phonon interactions?
where are the massive (e.g. breathing) modes?

$$
\text { What about } \mathrm{D}=3+1 ? \quad\left[\mathrm{SU}(3) ; \beta=6.0625 ; l_{c} \sqrt{ } \sigma \sim 1.6\right]
$$

- Nambu-Goto; - Luscher

$20 \times 20^{2} \times 16 \quad, 4.5 \mathrm{M}$ sweeps ; $16 \times 16^{2} \times 16 \quad, 6.0 \mathrm{M}$ sweeps ; $12 \times 16^{2} \times 24,5.0 \mathrm{M}$ sweeps $10 \times 20^{2} \times 36,2.0 \mathrm{M}$ sweeps ; $9 \times 32^{2} \times 48 \quad, 0.6 \mathrm{M}$ sweeps

spectrum of excited states (preliminary) ...

lines Nambu-Goto: only parameter is σ

$\bullet q=0$ ground state: $J=0 \quad \bullet q=1$ ground state: $J=1 \quad \bullet q=0$ excited state: $J=0$
$\bullet q=0$ excited state: $J=2 \quad \circ q=1$ excited state: $J=1$

What is today's big lattice problem? \leftrightarrow

What is today's big physics problem?

LHC and BSM
strong coupling BSM physics
e.g. near conformal ETC or SUSY

