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１．DT and CDT [Ambjørn, Loll: hep-th/9805108]

a. What is DT (Dynamical Triangulation) ？

b. What is CDT (Causal Dynamical Triangulation) ？

c. If we unify the eqs. of DT and CDT, then ・・・

２．2d CDT and Matrix Model [Ambjørn, Loll, Watabiki, 

Westra, Zohren: hep-th/0802.0719, 0804.0252, 0810.2408]

a. A naïve method by matrix model (failed case)

b. The expression by string field theory

c. The expression by matrix model

d. The relation between new matrix model and old one
（Wick rotation？）

３．Summary



1. DT and CDT
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 Definition of 2d DT

Construction of lattice by “equilateral  triangles” 
in 2d Euclidean space

（e.g.）

a. What is the DT ( Dynamical Triangulation ) ？

1- a
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Each triangle has the same size and equilateral.

Curvature of site ,      is

（ curvature exists only on sites ）

（e.g.）
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 Partition function of ２d DT

Quantum gravity  is the path integral of metric

（ is the cosmological constant ）

The metric expresses various curved spaces, 

so the path integral is the summation of al l kinds 

of triangulated spaces.

（ is cosmological constant at lattice level, is nr. of triangles ）

The summation is performed by all possible 

triangulated lattices by 
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 ２d DT and Matrix model

Definition of dual lattice

connect the c.o.m. of triangles side by side （green lines）

（e.g.）

Dual lattice is a Feynman diagram constructed by three 
point vertices.

1- a
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Feynman diagrams

Partition function and Lagrangian

1- a
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Topology and power of 
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Amplitude and Laplace transf.

We here introduce the function

cf.
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Loop equation

One obtains the loop eq. by

This decides the partition fun of each topology.

Cf: SD eq.
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Green関数

Green関数 is

and satisfies the decomposition law

1- a
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Laplace transf.

Laplace transf. is defined by

and decomposition law becomes

（ Note： ）
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Continuum limit

The continuum limit is obtained by

Then,  Green fun of decomposition law becomes

1- a
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 Definition of ２d CDT

Construction of lattice by “time (isosceles) triangles” in 
2d Minkowski space

（e.g.）

The direction of time is unique and causal.
（ The set of  above triangulated lattices is the subset of triangulated lattice by DT. ）

b. What is CDT ( Causal Dynamical Triangulation ) ？

1- b

t

Two kinds of 
triangle appear.
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Each triangle has the same size and isosceles.

The curvature of  a site ,  is expressed by

1- b
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 ２d CDT and Green fun

Definition of Green fun

The partition fun with cylinder topology is obtained 

by piling the following lattice

（e.g.）

（Green fun）

This partition function is easily obtained because 

the calculation is a simple summation.

After taking the continuum limit, we obtain

the differential eq.
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Property of Green fun

The concrete expression of Green fun is 

where

1- b

 

 )()(1log

)()(
1

)1;,(
1

yGxG

yGxG
n

yxG
n

n







 














 1
:)(

1n

nG

)( xG 

)( yG 



18

Continuum limit of Green fun.
The continuum limit is obtained by

The continuum limit of Green fun 

satisfies the differential  eq.

The disk amplitude becomes 

1- b
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 Decomposition law of ２d DT and CDT

If we unify the continuum limit of DT and CDT

Then, the decomposition law becomes

for DT for CDT

1- c
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Here, only for CDT,  we set

Then, the decomposition law becomes

At this stage, the unification of both theories is

formal.  But we consider this unification seriously.

In the next section we will construct the theory 

which leads to the above decomposition law.
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2. ２d CDT and Matrix Model
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 Use the two kinds of matrix

Let’s express the time (isosceles) triangles

by

（e.g.）

a. A naïve method by matrix model (failed case)

2- a
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 Introduction of creation op. and annihilation op. ( : length )

 Hamiltonian

b. The expression by string field theory
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 Hamiltonian which expresses the separation and fusion of 
strings (universes)

2- b
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The case of DT：

The cosmological constant       appears.
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 Eq. of Schwinger-Dyson

expanding eq. by            and perform Laplace transf.

where
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for example,  for

if one uses

then, one obtains

thus, 
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for higher terms, for example, 

more higher terms are obtained by the same method
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 Matrix model

For the potential 

by the loop eq.  

is obtained.  

This eq. coincides with the Schwinger-Dyson eq.
by replacing

c. Expression by Matrix model
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 Loop eq.

Higher level loop eq. becomes, for example, 

more higher level loop eq. are also obtaind by the same way.

These eqs. coincide with the Schwinger-Dyson eqs. 

by replacing 
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 Matrix model

Assuming the potential

then, one obtains the disk amplitude

d. The relation between new matrix model and old one

（Wick rotation？）
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 Continuum limit

Taking the continuum limit, 

disk amplitude at 

at 

where we rescale       and  
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 I introduced CDT (Causal Dynamical Triangulation ) .

 I explained the difference between CDT and DT.

 The potential of  2d CDT as a matrix model is

 A kind of Wick rotation is possible

is a coupling const. of string theory

is a cosmological constant
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