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[1] The resonant behavior of delayed oscillators is studied
using two simple prototype equations similar to that used by
Suarez and Schopf. One prototype equation has a periodic
modulation of simultaneous feedback, and the other
prototype equation has a periodic external forcing term.
The periodic modulation yields even-multiple resonance to
the modulation periods, while the periodic forcing results in
odd-multiple resonance to the forcing periods. The reason
why these two-types of resonance occur in each system is
explained. The key mechanism for the resonance is that a
positive simultaneous feedback for small amplitudes sets a
threshold. Only when the sum of non-simultaneous terms is
larger than the threshold, a phase reversal can take place. The
implications of El Nifio elimination due to annual cycle and
potential importance for the decadal variability are
discussed. INDEX TERMS: 1620 Global Change: Climate
dynamics (3309); 3220 Mathematical Geophysics: Nonlinear
dynamics; 3339 Meteorology and Atmospheric Dynamics: Ocean/
atmosphere interactions (0312, 4504); 4215 Oceanography:
General: Climate and interannual variability (3309); 4522
Oceanography: Physical: El Nino. Citation: Minobe, S., and
F. Jin (2004), Generation of interannual and interdecadal climate
oscillations through nonlinear subharmonic resonance in delayed
oscillators, Geophys. Res. Lett., 31, 116206, doi:10.1029/
2004GLO19776.

1. Introduction

[2] Delay-negative feedback models were widely used for
interannual variability, such as El Nifio/Southern Oscillation
(ENSO) [Suarez and Schopf, 1988; Battisti and Hirst, 1989]
and also for interdecadal variations [Latif and Barnett,
1994; Gu and Philander, 1997; Jin, 1997]. It is known
that nonlinear delayed oscillators exhibit interesting sub-
harmonic resonance, which was intensively studied to
explain the phase-locking of ENSO to the annual cycle
[e.g., Tziperman et al., 1994, 1998; Jin et al., 1994, 1996;
Neelin et al., 2000; Saunders and Ghil, 2001; Liu, 2002].
Also, a subharmonic resonance might be responsible for
the postulated resonance feature between the bi-decadal
oscillation (about 20-year period) and the penta-decadal
oscillation (50—70-year period) for the Pacific sector as
suggested from the observations by Minobe [1999, 2000],
who argued that the simultaneous phase reversals of these
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two oscillations marked the climatic regime shifts over the
North Pacific in the 1920s, 1940s and 1970s, which were
reported by Minobe [1997] and Mantua et al. [1997].
Recently, Solomon et al. [2003] reported that a decadal
oscillation is resonant with the interannual variability in
their hybrid air-sea coupled model.

[3] However, it was not explained adequately how sub-
harmonic resonance occurs and what processes determine
the parameter ranges of subharmonic resonance. In the
present paper, therefore, we aim to address these questions
using simple prototype equations for delayed oscillators.

2. Two Prototype Models

[4] Subharmonic resonance for delayed oscillators occurs,
if feedback strength is modulated periodically [7ziperman
et al., 1998; Jin et al., 1994, 1996; Liu, 2002], or if periodic
external forcing is applied [Tziperman et al., 1994; Wu et al.,
1993; Saunders and Ghil, 2001; Liu, 2002]. For clarity,
the former case is called periodic modulation and the latter
case is called periodic forcing in the present paper. We use
two of the simplest nondimensional prototype equations,
which are similar to the delayed oscillator equation proposed
by Suarez and Schopf [1988], with minimal changes in
order to include the periodic modulation and periodic
forcing.

[s] The prototype equation for the periodic modulation is
as follows

where f is the representative amplitude for a physical
system, i.e., sea surface-temperature anomaly over the
eastern equatorial Pacific for the ENSO, ¢ is the time, f — />
represents the simultaneous feedback, which consists of
linear positive feedback and nonlinear negative feedback,
and of(t — T) represents the delay-negative feedback term
with the delay coefficient, o, and the delay time, T. The
periodic modulation of the simultaneous feedback is
expressed by the terms in the brackets, where 4,, is the
modulation amplitude, and 7}, is the modulation period.

[6] The other prototype equation, which is for the
periodic forcing, is given by

4 =f—f —of(t— 1)+ Ap cos <¥) (2)

dr "
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Figure 1. Simultaneous feedback as a function of
amplitude. Simultaneous feedback of f — f* is shown red
curve, and the same feedback but neutral for |f| > 1 is
shown in blue dashed curve. When the amplitude changes
from —1 to +1, the simultaneous feedback takes its negative
maximum of —0.38 (open circle), whose absolute value is
the threshold. This threshold feature is unchanged for the
feedback that is neutral for large amplitudes. Note that the
first and third (second and fourth) quadrants are associated
with the positive (negative) feedback.

where the last term is the forcing term, Ag is the forcing
amplitude, and 7 is the forcing period. Wu et al. [1993]
suggested that the role of annual period winds for ENSOs is
expressed as the external forcing term.

3. Threshold Arising From Positive Feedback

[7]1 A key feature of equations (1) or (2) is the positive
simultaneous feedback for small amplitudes. The positive
feedback for small amplitudes must be accompanied by
negative or neutral feedback for large amplitudes, so that
the system does not goes to a runaway situation. In order to
explain a role of these feedbacks, we introduce the following
equation;

af 3

e =r-r+q ()
where G is the sum of non-simultaneous terms, which can
consist of delay term and forcing term.

[8] Consider a situation where amplitude, f, changes its
sign from a negative value around —1 to a positive value
around +1 (Figure 1). Along this course, df/dt should be
positive, and hence the right hand side must also be positive,
ie.,

G>—max(f — /%) =2/3*?~ 038 (4)

Equation (4) indicates that the sum of the non-simultaneous
terms must be larger than a threshold value (0.38) for a
phase reversal, during a period long enough that the system
can respond (longer than nondimensional unit time). It
should be noted that this threshold feature does not
qualitatively depend on details of the formulation of the
simultaneous feedback terms, as long as the simultaneous
feedback is positive for small amplitudes. For example, if
the feedback for large amplitudes is neutral (blue dashed
line in Figure 1), the threshold nature is unchanged. As
explained below, the threshold plays a central role in the
subharmonic resonance for both the periodic modulation
and periodic forcing.

4. Resonance to Periodic Modulation

[9] We have integrated equation (1) for nondimensional
time of 1000 from initial amplitude of unity. Integration is
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conducted for each delay time, which varies from 0.1 to
12.5 with a step of 0.1, with the delay coefficient, , of 0.5,
0.75, and 1. The modulation parameters are set as 4, = 1,
Ty = 4.The unit timescale for nondimensionalization is the
dimensional linear simultaneous feedback time [Suarez and
Schopf, 1988]. Therefore, in the case of the annual modu-
lation of ENSOs, T3, = 4 means that the simultaneous
feedback has the dimensional e-folding time of three
months (1/4 yr). If we assume the physical delay time is
about a half year [Battisti and Hirst, 1989], then the
nondimensional delay time becomes two. We explore a
wider range of delay times, in order to reach better under-
standing of resonance structure.

[10] Figure 2 summarizes the relation between the delay
times and mean periods, which are calculated from the zero-
crossing points for the latter half of the numerical integra-
tion. The overall structure exhibits a feature similar to
Devils staircase characterized by wide and narrow steps
at certain periods with a monotonic increase of periods as
delay increases. Consistent with the previous studies [e.g.,
Jin et al., 1994; Neelin et al., 2000; Liu, 2002], the steps are
wide for even-multiples of the modulation period. The step
widths are wider for smaller delay coefficients, and are
approximately the same between quadruple- and sextuple-
period resonance for a constant delay coefficient.

[11] The reason why the even-period resonance is dom-
inant for the periodic modulation is explained by taking
account of the threshold. The periodic modulation means
that the threshold is weakened at every one period of the
modulation. With a moderate delay coefficient, o, the
amplitude can reverse its phase, only when the threshold
is weak. If the phase reverses with each (every two) of the
weakened thresholds, the resultant period becomes the
double (quadruple) of the modulation period. Consequently,
the periodic modulation results in dominant even-multiple
resonance. When delay coefficient and hence delay term
become large, the chance that the delay term overwhelms
the threshold increases, and the oscillations are less con-
strained by the modulation. Therefore, as the delay coeffi-

-— >
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Figure 2. Mean periods as a function of delay times for
the periodic modulation (Tyy = 4, Ayy = 1). The right
hand axis indicates the oscillation period relative to the
modulation period. The blue, red and green dots are for
the delay coefficient, v, of 0.5, 0.75, and 1.0, respectively.
The blue (green) dots are shifted +0.2 (—0.2) for the left
hand axis for an easier visual inspection.
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Figure 3. Time series of f (blue curve) and delay term
(green curve) along with the modulation strength (pink
shades) at the longest (a) and shortest (b) delay times for the
quadruple-period resonance for the periodic modulation.
The pink shades indicate where the modulation, given by
the terms in the bracket in (1), is weaker than unity. The
delay coefficient, o, is 0.75, and the other parameters are the
same as those for Figure 2. For the explanation of the scales
such as Tyax> Tmins Las S1, S2, and s3, see text.

cient is decreased (increased), step widths become wider
(narrower) as mentioned above.

[12] It is interesting to examine temporal relation among
the terms of the prototype equation (1) for the resonance.
Figure 3 shows the time series of the oscillation amplitudes,
delay term, and modulation strength at the longest and
shortest delay times for the quadruple-period resonance.
At the longest delay time (Tpax), @ half period (772) is given
by the sum of the delay time and a transient time (s;)
(Figure 3a), i.e., Tyax + s1 = 7/2. The transient time s, is
defined as a time for which the amplitude becomes zero
after the phase reversal of the delay term under the condi-
tion of the weakened threshold.

[13] Similarly, a half period for the shortest delay time
(Tmin) 18 divided as T, + T)/2 + 55 + 53 = T/2 (Figure 3b),
where s, is the time during which the oscillation amplitude
stays the opposing polarity against the delay term under a
weakened threshold. In this case, the phase reversal of the
delay term does not directly lead the phase reversal of the
oscillation amplitude; before the oscillation amplitude
crosses zero, the threshold is strengthened and prohibits a
phase reversal for a half of the modulation period. When
the threshold is weakened again, the oscillation can reverse
its phase after another transient time, s;. For the n’th
subharmonic, the oscillation period is identical to the n’th
multiple of the modulation period (7 = nTy,). Thus, the
longest and shortest delay times for the resonance can be
written as

Tmax = ITyn/2 —s1 and  Toin = Ty(n—1)/2 — s, — 53, (5)

where n is an even number. Consequently, the step width is
given by

Tr/2 — 51452+ 53.
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Figure 4. Same as Figure 2, but for the periodic forcing
case (Tp =4, Ap = 1).

The transition times, s1, 5,, and s3 substantially depend not
on the delay times but on the delay coefficients, resulting in
the aforementioned roughly constant step width at even-
multiple resonance for respective delay coefficients.

5. Resonance to Periodic Forcing

[14] Figure 4 shows mean periods for the numerical
integration of the prototype equation for the periodic forcing
equation (2), with the forcing parameters of 4 = 1 and
Tr = 4, and the other parameters are the same as those for
Figure 2. Again, a similar feature to the Devil’s staircase is
generally evident, but wider steps of oscillation periods are
now found at odd-multiples of the forcing period instead of
the even-multiples of the modulation period consistent with
previous studies [Wu et al., 1993; Saunders and Ghil, 2001;
Liu, 2002].

[15] Figure 5 shows time series for the triple-period
resonance at the longest and shortest delay times for the
delay coefficient of 0.75. The delay and forcing terms are of
similar magnitude (~1.0). Thus, the phase reversal can
occur when the delay and forcing terms are in-phase. Two
successive phase reversals must have opposing polarity, and
the forcing term has the opposing polarity at 0.5, 1.5 and

Figure 5. Same as Figure 3, but for the periodic forcing
case. The time series of the forcing term is denoted by the
red curve.

3of 5



L16206

2.5 forcing periods. This constrains that the oscillation takes
1-, 3-, or 5- subharmonic of the forcing period. Consequently,
the periodic forcing results in the odd-multiple resonance.

[16] As in the case of the periodic resonance, the tempo-
ral relation of phase reversal with the delay and forcing
terms is examined for the longest and shortest delays for the
triple-period resonance (Figure 5). In general, the half
period is subdivided in a similar manner to the case of the
periodic modulation (compare Figures 3 and 5). Therefore,
essentially the same equation as that of the periodic mod-
ulation gives the longest and shortest delay times for the
periodic forcing as,

Tmax = TFn/2 —s1 and Ty = Tp(n—1)/2 —s5 — 53, (7)
where 7 is an odd number instead of the even number for
the periodic modulation.

[17] A stronger delay coefficient may result in a free
oscillation, whereas a stronger forcing may yield the oscil-
lation period identical to the forcing period. Consistently,
using a slightly more complex model than the present one,
Liu [2002] reported that a strong annual-period forcing
eliminates interannual ENSO variability. He suggested that
this mechanism may contributed less active ENSOs in mid-
Holocene. The present results indicate that the ENSO
elimination may occur, if the annual forcing is larger than
the delay term by the threshold value.

6. Discussion

[18] The present study showed that a key mechanism for
the resonance in the delayed oscillators is the threshold,
which arises from the combination of the simultaneous
positive feedback for small amplitudes and negative-or-
neutral feedback for large amplitudes. We employed the
minimal changes from the delayed oscillator model by
Suarez and Schopf [1988], and examined a limited param-
eter space. Larger changes in formulations and wider
parameter ranges are worth to be closely explored in future,
but some features of different formulations are described
here. For example, not only the simultaneous feedback
term, but also the delay term may be modulated periodically;
in this case, we found that even-number resonance is also
dominant. The present simultaneous feedback term, f — f°, is
a simplification of a hyperbolic tangent form for an ENSO
modeling [Battisti and Hirst, 1989]. If we used the hyper-
bolic tangent function for the simultaneous feedback and
delay terms, we still obtained even number resonance for the
periodic modulation and odd-number resonance for the
periodic forcing.

[19] For ENSO, the periodic modulation and periodic
forcing are considered being associated with the annual
cycle [e.g., Liu, 2002]. In this case, the nondimensional
modulation and forcing periods are around 2—3 according
to the present nondimensionalization by Suarez and Schopf
[1988] with parameters of Battisti and Hirst [1989]. This is
slightly smaller than 4 used for the present integrations. For
the periodic modulation, when we use the smaller modula-
tion period of 2, the quadruple- and sextuple-period reso-
nance also occurred, but the double-period resonance, i.c.,
the highest frequency subharmonic resonance, did not
occur. Similarly, for the periodic forcing, triple-period
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resonance disappeared with the forcing period of 2, but
occurred with the forcing period of 3.

[20] It is noteworthy that the dimensional amplitude of
the positive linear feedback required for a resonance
becomes small as the timescale of phenomena becomes
long. This is because the nondimensional period of the
modulation (forcing) is equivalent to the ratio of the
dimensional period of the modulation (forcing) relative to
the e-folding timescale of the linear feedback. Therefore, a
weak positive feedback, which is not important in the
interannual variations, can result in resonance on inter-
decadal timescales. For example, the nondimensional forcing
period of four, used in the present paper, means that the
e-folding timescale of the dimensional linear feedback is
quarter of the dimensional forcing period. Thus, when we
examine the possibility that an interdecadal oscillation
(i.e., 20-yr period) acts as a forcing, the dimensional e-folding
time of the positive feedback as small as 5-yrs is large
enough to cause a resonance, and has a possibility to
yield a 60-yr oscillation. Recently, Schneider et al. [2002]
reported that a week positive feedback is at work on the
timescale of several years in decadal interaction between
the Kuroshio/Oyashio extension and Aleutian low analyzing
a coupled general circulation model. Their result suggests
the possibility of weak positive feedback in the real
world. The present study indicates that the positive feedback
in the climate system, even if it is small, has much
implication.
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