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S U M M A R Y
A three-stage inversion scheme for surface wave tomography working with multimode phase
dispersion as a function of frequency provides a means of combining a wide range of data in
a common framework. The phase average approximation is applied directly to phase slowness
and there is no need to invoke perturbation arguments for the interpretation of path-averaged
velocity models derived from waveform inversion of surface waves. By treating such wave
speed profiles as summaries of path specific dispersion behaviour it is possible not only to
combine results from different style of inversion but also to provide maximum exploitation of
Love and Rayleigh wave information. Inversions of all suitable waveforms can be undertaken
in terms of isotropic models. Dispersion information from all paths is combined to form
multimode phase speed distributions as a function of frequency in linearized inversion which
takes account of path bending and finite frequency effects. The final inversion for 3-D wave
speed structure is based on a cellular inversion of the multimode frequency dispersion including
angular effects in terms of a local stratified model including anisotropy. The smoothing from
inclusion of finite frequency effects and damping of the linearized inversion for the phase speed
distributions will control the smoothness of the 3-D shear wave speed model.
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1 I N T R O D U C T I O N

Current approaches to surface wave tomography on a regional scale
are based either on the exploitation of fundamental mode dispersion
(Ritzwoller & Levshin 1998) or on the use of multimode synthet-
ics to match waveforms on individual paths (based on the work of
Nolet 1990). In the partitioned waveform approach formalised by
Nolet (1990), the 1-D models obtained by waveform fitting are in-
terpreted as the average structure along the path between source
and receiver. The ensemble of path averaged constraints are then
used in a linear inversion to recover 3-D structure (Zielhuis &
Nolet 1994). The waveform inversion is based on linearized inver-
sion with either direct use of the seismograms (Nolet et al. 1986) or
the use of secondary variables based on cross-correlation between
observed and synthetic seismograms (Cara & Lévêque 1987). Both
methods show dependence on the reference model used for initiating
the inversion. The domain of quasi-linear behaviour is larger with the
use of secondary variables, so that a single mantle reference model
has been employed for a large number of paths (Debayle & Ken-
nett 2000a). The second stage linear inversion can be constructed
as a form of cellular tomography (Zielhuis & Nolet 1994), or in
a continuous representation with an imposed Gaussian smoothing,
defined by a model cross-correlation length based on the continuous
regionalisation scheme of Montagner (1986).

The common feature of all the different applications is that the
models obtained in the first stage of the process are interpreted
directly as averages along the paths. It has been pointed out by

Marquering et al. (1996) that, as frequency increases, this path-
average assumption has significant limitations for higher mode in-
formation representing body waves, since the sensitivity of the data
is concentrated around the body wave paths. Improved results for
data set with a large higher mode component can be obtained, at
considerable computational cost, by incorporating an allowance for
coupling between the modes for the reference structure. The inver-
sion procedure is then both iterative and non-linear.

The more common approach has been to enlarge the size of the
data set so that dense path coverage is brought to bear on the delin-
eation of structure. For example, for the Australian region, Simons
et al. (1999) and Debayle & Kennett (2000a) have used more than
two thousand paths in inversions using Rayleigh waves. With such
path densities, it is possible to extend the second stage inversion
to try to extract angular dependence from the path averages and so
attempt to define azimuthal anisotropy (Debayle & Kennett 2000a).

Much regional surface wave tomography has been carried out us-
ing just Rayleigh waves recorded on the vertical component. How-
ever, Lévêque et al. (1998) used both Rayleigh and Love wave
data for a limited number of paths across the Indian Ocean re-
gion, with a model of transverse isotropy with a vertical symmetry
axis (TIV) for each path. From the set of 1-D models for the paths
both wave speed variations and anisotropic components were ex-
tracted, revealing azimuthal and polarization effects (Lévêque et al.
1998). This approach was extended to a much larger data set for the
Australian region by Debayle & Kennett (2000b) and used to demon-
strate the presence of significant polarization anisotropy between
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vertical and horizontal S wave propagation. The pattern of polar-
ization anisotropy shows significant lateral variation and does not
have a direct association with the wave speed patterns revealed by
earlier inversion based on Rayleigh waves alone. With the use of
TIV models both Rayleigh and Love wave observations are needed
for each source-station pair, which limits the available paths.

In this paper we reappraise the way in which we can exploit mul-
timode surface wave information for regional tomography, partic-
ularly in the context of anisotropic inversion. The levels of hetero-
geneity revealed in recent studies of the upper mantle are too high
for the path-average assumption to be applied directly to the 1-D
model representing a fit to the observed seismograms. However, for
the frequency interval in which modal interaction can be neglected,
we can use the path-average assumption for individual mode contri-
butions and regard the 1-D model as a representation of the character
of multimode dispersion along the source-receiver path. This view-
point is reinforced by investigation of fully non-linear inversion for
surface wavetrains (Yoshizawa & Kennett 2002a) which demon-
strates the possibility of extracting different styles of 1-D models
with a comparable fit to data. Although the models differ signif-
icantly, the dispersion of the first few modes over the frequency
range controlled by the data cannot be distinguished.

We will show that the procedure for regional surface-wave to-
mography can be reformulated as a three-stage process working
with multimode dispersion (rather than the two steps of the parti-
tioned waveform inversion approach). The stages are construction
of path information by waveform fitting, building multimode phase-
speed maps as a function of frequency and then a final inversion for
local wave speed properties.

The new scheme offers the advantage of allowing the incorpora-
tion of different style of information such as dispersion measure-
ments, angles of incidence and waveform constraints within a single
formulation. By working directly with phase speed we can incorpo-
rate the deviation of paths from the great-circle using ray tracing for
individual modes and take account of the extended influence zone
around each ray path (Yoshizawa & Kennett 2002b).

2 P A T H - AV E R A G E A P P R O X I M A T I O N S

The basis for the use of the path-average approximation comes from
the analysis of Woodhouse (1974) for surface wave propagation in a
quasi-stratified medium with slowly varying seismic properties. In a
high-frequency approximation the passage of an individual surface-
wave mode can be described by a ray theory, where the trajectory
is controlled by the phase-speed variations in the model. The local
phase speed for the mode is determined by the dispersion charac-
teristics of the stratified structure in the column beneath the point of
interest. The accumulated phase along the path is the integral of the
local phase slowness p; thus for the jth mode, at angular frequency
ω, the phase contribution is

ωφ j (ω) = ω

∫
ray j

ds p j (s, ω), (1)

where the integration of the local slowness p j (s, ω) is taken along
the ray path for the mode. For a epicentral distance X we can then
extract an average slowness 〈p j (ω)〉 for the jth mode from

φ j (ω) = X〈p j (ω)〉. (2)

When the ray path departs from the great-circle between source and
receiver 〈p j (ω)〉 will be overestimated, because X will be shorter
than the true path length.

The leading order term in the asymptotic approximation involves
only the jth mode, whereas the higher order corrections can be writ-
ten in a form which includes cross-mode coupling along the ray path
for the jth mode.

The path-average approximation will breakdown in the presence
of rapid changes in seismic parameters compared to the wavelengths
of the surface waves. Such strong heterogeneity is likely to produce
significant deviations of the surface wave path from the great circle
between source and receiver, with induced coupling between modal
contributions. The problems are most severe at higher frequencies as
the wavelength shortens, and for the higher modes which sum to rep-
resent body-wave contributions. Marquering et al. (1996) show that
a limited allowance for mode-coupling along the path can provide
an improved treatment of intermediate-period body waves by pro-
viding concentration of sensitivity around the body-wave ray path,
rather than spread along the whole segment as in the path-average
approximation.

2.1 Representation of surface wave seismograms

To the leading-order asymptotic approximation, the contribution to
the surface wave portion of the seismogram from a number of modes
can be written as

u(X, ω) =
J∑

j=0

R j (X, ω) exp

{
iω

∫
ray j

ds p j (s, ω)

}
S j (ω), (3)

in the far-field of the source. S j (ω) represents the excitation im-
posed by the source through terms dependent on the source depth.
R j (X, ω) includes the terms dependent on receiver depth and the
geometric spreading of the surface waves. We can account for sur-
face wave attenuation by allowing the local phase slowness p j to
be complex. For a laterally varying medium S j , R j are usually
evaluated using the structures appropriate to the source and receiver
positions. But, as pointed out by Kennett (1995), these contributions
are not localised and include some path dependency. If we make the
replacement of the cumulative phase speed contribution (1) by the
equivalent averaged phase term (2), for each mode, we can rewrite
the seismogram representation (3) as

u(X, ω) =
J∑

j=0

R j (X, ω) exp{iωX〈p j (ω)〉}S j (ω), (4)

the form expected for a stratified medium for which the dispersion
of the jth mode was described by 〈p j (ω)〉. It is this equivalence that
is exploited in inversion of the waveforms of surface waves in terms
of a path-specific stratified model.

2.2 Path-averaged models?

The basis of the two stage inversion for 3-D shear wave speed
structure in the Partitioned Waveform Inversion (PWI) scheme of
Nolet (1990) is that the stratified model obtained by fitting observed
waveforms represents the average of the shear wave speed along
the great-circle path from source to receiver. As we shall see, this
is a reasonable approximation if the variations in seismic structure
encountered along the path are sufficiently small that first-order per-
turbation theory can be applied. However, there are now indications
of contrasts in crustal and mantle structures which are strong enough
to lie outside the domain of linearized analysis. Examples include
the edge of a shield, e.g. Simons et al. (1999) and Debayle & Kennett
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(2000a) in studies of Australia, and a direct transition from oceanic
to continental structure.

We introduce a stratified model of shear wave speed β0(z), as a
function of depth z, for which we can calculate an approximation to
the observed seismogram,

u0(X, ω) =
J∑

j=0

R0
j (X, ω) exp

{
iωX p0

j (ω)
}
S0

j (ω), (5)

based on a suitable representation of source excitation. The effects
of attenuation can be included through using a complex wave speed
at each frequency to calculate the mode slownesses p0

j (ω).
We then look to improve the representation of the observed seis-

mogram by modifying the shear wave speed distribution; the effect
of density is commonly either ignored or linked to wave speed vari-
ation by some scaling. If the excitation terms are adequately de-
scribed, the dominant contribution to the surface wave seismogram
will come from the modal phase terms. Thus, using the leading-
order asymptotic representation (3) to represent the observations,
we can recast the exponential term and extract the contribution for
the reference model β0(z):

u(X, ω) =
J∑

j=0

R j (X, ω) exp


iωX p0

j (ω)

+ iω

[∫
ray j

ds {p j (s, ω)} − X p0
j (ω)

]
S j (ω),

=
J∑

j=0

R j (X, ω) exp
{
iωX p0

j (ω) + iωδφ j

}
S j (ω), (6)

The phase perturbation ωδφ j (ω) between the actual and reference
media can be expressed through

δφ j =
∫

ray j

ds{p j (s, ω)} − X p0
j (ω) =

∫ X

0
ds

{
p̂ j (s, ω) − p0

j (ω)
}
,

(7)

in terms of the projected slowness p̂ j along the great-circle between
source and receiver. With the restriction to just variations in shear
wave speed δβ(z, s) from the reference mode β0(z) along the path,

p̂ j (s, ω) − p0
j (ω) =

∫ a

0
dz

[
∂ p̂ j

∂β(z, s)
δβ(z, s)

+ ∂2 p̂ j

∂β2(z, s)
[δβ(z, s)]2 + · · ·

]
, (8)

where a is the radius of the Earth. To a first order approximation,
the perturbation

δφ j =
∫ X

0
ds

∫ a

0
dz

∂ p̂ j

∂β(z, s)
δβ(z, s), (9)

and with a change in the order of integration

δφ j =
∫ a

0
dz

∫ X

0
ds

∂ p̂ j

∂β(z, s)
δβ(z, s). (10)

Now introduce the average perturbation in shear structure along the
path at each depth,

〈δβ(z)〉 = 1

X

∫ X

0
ds δβ(z, s), (11)

and make a linearized treatment about this path-averaged model;
then

δφ j =
∫ a

0
dz

∫ X

0
ds

(
∂ p̂ j

∂β(z)

∣∣∣∣
β0+〈δβ〉

+ ∂2 p̂ j

∂β2(z)

∣∣∣∣ 	̄β(z, s)

)

× (〈δβ(z)〉 + 	̄β(z, s)), (12)

where we have written 	̄β(z, s) = δβ(z, s) − 〈δβ(z)〉. When we
recognise that

∫ X

0
ds 	̄β(z, s) ≡ 0,

we see that

δφ j =
∫ a

0
dz 〈δβ(z)〉 ∂ p̂ j

∂β(z)

∣∣∣∣
β0+〈δβ〉

+
∫ a

0
dz

∂2 p̂ j

∂β2(z)

∣∣∣∣
∫ X

0
ds [	̄β(z, s)]2. (13)

The first term corresponds to a stratified model with the path av-
eraged structure β0(z) + 〈δβ(z)〉. The correction term depends on
the square of the deviations of the actual structure from the path
average and will become important if there are significant portions
of the path with more than about 4 per cent deviation from the
path-averaged structure.

If the variations in the true seismic structure along the path are
small, it is a reasonable approximation to assume that a waveform
inversion in terms of a stratified model will yield a path-averaged
model. We note that this is quite a strong requirement; it is not just
the shift associated with the path-average model that is required to
be small but also the true deviations from the model.

Even in circumstances where the path-average model assumption
is inadequate the representation of the seismogram in terms of the
cumulated phase contributions from each of the modes (1) can be
made, although the paths for the individual modes may be different.
The assumption of independent mode propagation, which underlies
this treatment, depends only on slow variations in wave speed and
not on the actual differences from the reference model.

The propagation of surface waves in 3-D models can be simulated
using direct numerical methods or via mode and wavenumber cou-
pling (Kennett 1998). However, numerical implementations for the
relatively long paths (in terms of wavelengths) needed for simulat-
ing regional tomography are not yet available. Testing of waveform
inversion procedures has therefore been confined so far to stratified
models.

An extensive set of synthetic tests for stratified media (Hiyoshi
2001) shows that a direct linearized inversion procedure (Nolet et al.
1986) will provide good recovery of the true model for perturbations
in velocity of the order of ±2 per cent. This makes the choice of
starting model β0(z) critical to the success of this class of waveform
inversion.

By employing secondary variables, as in the work of Cara &
Lévêque (1987), the domain of practical inversion for stratified mod-
els for Rayleigh wave observations can be expanded to ±8 per cent
deviations from the reference model. However, the limitations on
the interpretation of the recovered model remain. Only for small
shifts from the reference model can the model obtained by wave-
form inversion of observed data be regarded as an average of the
shear wave speed structure encountered along the path. For Love
waves the domain of quasilinearity is more limited (±4 per cent),
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Figure 1. Illustrations of ray tracing for Rayleigh waves through the phase speed distribution derived from the shear wave speed model of
Debayle & Kennett (2000a) for the Australian region. A uniform spray of rays is initiated from a source in New Guinea for both the fundamental and
first higher mode at 40 s period and tracked across the phase speed maps for the two modes. At the left the sensitivity of the mode contributions to velocity
structure with depth are indicated through the partial derivatives with respect to shear wave speed. To the right the keys indicate the level of phase speed
perturbation from reference speeds of 3.93 km s−1 for the fundamental mode and 4.87 km s−1 for the first higher mode.

because of the strong overlap of the fundamental and higher mode
contributions.

As the frequency of the surface waves is increased the influence
of wave speed gradients become more marked. Gradients perpen-
dicular to the propagation path lead to deviations of the propagation
path from the great circle (Fig. 1) and gradients along the path tend
to induce coupling between modes. These effects limit the range
of frequencies over which path average approximations can be ef-
fective. The fundamental modes are strongly influenced by shallow
structure and suffer substantial path deviations at higher frequencies.
Mode-coupling is most important for the higher modes (Marquering
et al. 1996). The influence of mode coupling can be restricted
by suitable choice of the frequency window employed (Kennett
1995).

2.3 An alternative viewpoint

Rather than rely on perturbation methods we can seek a 1-D model
β ′(z) such that for a set of modes

φ j (ω) = p′
j (ω)X, (14)

over the frequency range of interest. We can then use β ′(z) as a
representation of the multimode dispersion. This forms the basis
of the fully non-linear inversion procedure for the waveforms of
surface waves developed by Yoshizawa & Kennett (2002a), based
on the use of the Neighbourhood Algorithm procedure of Sambridge
(1999) for the exploration of parameter space.

The constraints on wave speed structure provided by the matching
of waveforms are quite tight for any particular parametrization of
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the wave speed profile. However, different styles of parametrization
produce models with comparable fit to data but very different char-
acter. Nevertheless, the dispersion characteristics of the different
successful models match very well.

If then we treat the models recovered from waveform inversion as
a summary of multimode dispersion, we can work with somewhat
less restrictive conditions than when we look for a path-averaged
wave speed model. We still require the Earth to be smoothly varying
so that we may employ the path-average approximation for phase,
but significant deviations from the reference model can be accom-
modated. This viewpoint leads naturally to a three-stage inversion
procedure to recover 3-D seismic structure, through the intermedi-
ary of multimode dispersion maps as a function of frequency.

It is still necessary to work with a band of frequencies chosen to
ensure that frequencies are high enough that observations are made
in the far-field of the source and so a simple representation can be
used for the propagation terms, but not so high that mode coupling
becomes important.

3 T H R E E - S T E P I N V E R S I O N S C H E M E

We propose a three-stage approach to the construction of 3-D models
from surface wave data based on the development of multimode
dispersion distributions as a function of frequency. This new style
of surface wave tomography has the advantage of being able to
accept information from a range of different sources and styles of
interpretation and to integrate them in the model construction.

3.1 Multimode dispersion estimation

The first step in the construction of the model is to acquire path
specific dispersion information for a number of modes crossing the
region of interest. As uniform a path coverage as possible is needed
to be able to get good resolution of lateral variations in dispersion
at the second step.

Any style of estimate of phase dispersion may be used so that for
long paths to global stations it can be appropriate to make direct
dispersion estimates. Wherever possible such measurements should
be extended to higher modes as in the mode stripping scheme of van
Heijst & Woodhouse (1999), which depends on reasonable temporal
separation between mode contributions.

Although it would be desirable to use direct extraction of phase
contributions for different modes, at regional ranges the differences
in group velocity are not sufficient to allow isolation of more than
the fundamental mode, and even this is difficult for Love waves.
We therefore need to employ indirect measurements of the phase
properties. For regional ranges we can use waveform inversion for
the surface wave seismograms as a means of obtaining summary
1-D velocity profiles for each path. Irrespective of the particular
inversion scheme which has been used for the construction of the
shear wave speed profile we can then use the 1-D model as a rep-
resentation of the phase dispersion of the surface waves along the
path (Yoshizawa & Kennett 2002a).

Because we are only using the 1-D models as a summary of mul-
timode dispersion behaviour, we are able to use isotropic models to
provide an independent description of the dispersion of Love waves
and Rayleigh waves provided that anisotropic effects are small. The
simplification of model descriptions has a number of significant
advantages in increasing the flexibility of the tomographic process.

Previous analysis for Love and Rayleigh waves has focussed on
the simultaneous inversion of the waveforms on the vertical and tan-

gential components in terms of a transversely isotropic model with
a vertical symmetry axis (see, e.g. Lévêque et al. 1998; Debayle &
Kennett 2000b). The need for good recordings on both components
is very restrictive, since it is necessary to avoid the nodal regions of
both sets of radiation pattern.

In contrast by working with just the phase dispersion information
summarized by a stratified model we are not restricted by the need to
have both wavetypes well recorded. We are able to exploit all paths
for which there are good recordings of Love waves and so markedly
increase data coverage.

A useful addition to the dispersion information can also be ex-
tracted from horizontal component records in terms of the devia-
tions of the arrival directions of surface waves from the great-circle,
since such polarization information can be very significant for both
studies of lateral heterogeneity and anisotropy (Laske & Masters
1996, 1998; Larson et al. 1998; Yoshizawa et al. 1999). At regional
distances the differences in dispersion between Love and Rayleigh
waves is such that both waves appear at the same times, and it is
only the longer period portion of the Rayleigh wave train that is
sufficiently separated for arrival angle estimates to be made. For
longer paths the separation of the different components and modes
is clearer and more use can be made of the polarization information.

3.2 Inversion for phase speed maps

Once the phase dispersion information has been assembled for a
wide variety of paths the next step is to assemble phase dispersion
maps as a function of frequency for the different mode branches.
This process exploits the path-average property of the phase along
each of the paths.

The first pass can be conducted as a linear inversion based on
the assumption that the wave paths follow the great-circle, in which
case each of the dispersion curves for a path can be regarded as a set
of linear averaged constraints on the phase speed distribution across
a sweep of frequencies. Such an inversion can be cellular or exploit
a continuous representation as in the work of Montagner (1986).

This initial inversion then needs to be followed by iterative up-
dates. We can trace rays directly in the phase speed domain and so
the effects of the deviations of ray paths from the great-circle can
be included in the improvement of the phase speed maps at each
frequency.

Strong gradients in phase speed can produce significant ray path
deviations particularly at higher frequencies. In Fig. 1 we show the
patterns of propagation of Rayleigh waves from a source in New
Guinea through phase speed distributions for 40 s waves derived
from the shear wave speed model of Debayle & Kennett (2000a).
We show both the fundamental and first higher modes and shoot a
uniform distribution of rays from the source. The strong gradient in
phase speed associated with the edge of the Australian shield near
140◦E has the effect of introducing defocusing of the rays travelling
close to north-south, and the gradients to the east also have a sig-
nificant influence. The effects are more severe for the fundamental
mode where the sensitivity is greatest for structure in the upper-
most part of the mantle. There is a notable bunching of rays along
the transition from continental to oceanic mantle in northwestern
Australia. Even for the first higher mode, which samples the top
300 km of the mantle, there are perceptible deviations from the
great-circle around the shield edge and in the Tasman Sea to the east.
Two-point ray tracing shows that the deviations from the geodesic
path rarely exceed 300 km. However, the focussing and defocusing
effects evident in Fig. 1 have the effect of modulating the radiation
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Figure 2. Comparison of map views of the shear wave speed model of Debayle & Kennett (2000a) for the Australian region with the phase speed maps for
fundamental mode Rayleigh waves at periods where the sensitivity peaks at the same depths. The sensitivity of the mode contributions to velocity structure
with depth are indicated through the partial derivatives with respect to shear wave speed at the right. The reference velocity for the wave speed variation is
4.40 km s−1 at 100 km and 4.43 km s−1 at 200 km, and for the phase speeds 4.01 km s−1 at 73.7 s and 4.26 km s−1 at 143.3 s period.
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pattern imposed by the source and in extreme cases may mean that
a waveform inversion is rejected on amplitude grounds.

In the phase speed domain we can not only include ray deviation
but also make a direct allowance for the influence zone surrounding
a wave path (Yoshizawa & Kennett 2002b), approximately one-third
of the first Fresnel zone, which arises from the finite frequency of
the surface waves. This zone has a typical half-width, transverse to
the path, of about 100 km for the fundamental mode at 40 s period,
and increases to close to 200 km at 100 s period. The effect of the
influence zone is a natural smoothing out of short-wavelengths from
the phase speed maps due to the healing of small perturbations in
the wavefronts by diffraction processes.

Once the phase speed maps and phase dispersion measurements
are mutually consistent, we can also include any available arrival-
angle information and use an iterative improvement using ray tracing
to match the full set of available data.

The patterns of crossing paths provide constraints on the angu-
lar variations in phase speed associated with possible anisotropy.
We anticipate that the Rayleigh wave speed will display an angular
variation characterized by terms dependent on azimuth θ through
cos 2θ , sin 2θ , which can in principal be extracted with 5 cross-
ing paths. For Love waves the dominant terms induced by slight
anisotropy have a cos 4θ , sin 4θ dependence and are more difficult
to determine effectively.

As pointed out by Larson et al. (1998), rendition of even slightly
anisotropic structure is best accomplished using anisotropic ray the-
ory. The logical progression is therefore to develop the isotropic
model, include anisotropy at first by a perturbation analysis and
then finally undertake anisotropic ray tracing.

The use of phase-speed maps at a number of frequencies thus
provides a working environment in which a wide range of different
sources of information can be brought together for mutual bene-
fit. We can for example make use of long-wavelength phase speed
maps derived from global studies to provide the initial framework
on which the more detailed information from regional paths can
be superimposed. This also has the merit of including information
from very long-period waves which are not well recorded in the data
from portable broad-band instruments which form the bulk of many
regional studies.

There is a close relation between the phase speed variations
and the associated 3-D variations in wave speed. The phase speed
maps reflect the velocity information as seen through a set of vari-
able filters dictated by the character of the modal eigenfunctions.
The interrelation is illustrated in Fig. 2 with map sections through
the model of Debayle & Kennett (2000a) contrasted with the phase
speed distribution for the fundamental mode at frequencies chosen
to have maximum sensitivity at the same depths. These relations can
be exploited in the final stage inversion for 3-D structure.

3.3 Inversion for wave speed structure

The final step of the inversion scheme exploits the localisation of
phase-speed information with local inversions for 1-D shear wave
speed profiles. We need to assemble the full set of multimode phase
dispersion maps as a function of frequency and then use some form
of cellular inversion to extract a 3-D model. Within each cell we
combine the local information for each mode to construct a set of
dispersion curves as a function of frequency including azimuthal
effects and then undertake a stratified medium inversion for a local
1-D wave speed profile including anisotropy. The smoothing ap-
plied in the construction of the phase-speed maps, both to stabilise
the inversion and also through the finite-frequency influence func-

tions will mean a high degree of correlation between the dispersion
properties in nearby cells, and hence of the wave speed profiles.

There may be merits in using an irregular cell system, e.g. through
Delaunay triangulation (Sambridge et al. 1995), to allow for varia-
tions in the sampling by paths particularly on the edges of regions.

4 D I S C U S S I O N

Although the 3-stage tomographic inversion procedure is less direct
than methods such as partitioned waveform inversion, it provides a
convenient means of studying regions with large contrasts in struc-
ture. By using the intermediary of phase speed maps as a function of
frequency we can make allowances for finite frequency effects and
undertake an iterative linearized inversion to account for the influ-
ence of strong heterogeneity via ray path deviation. It is also possible
to include angle of incidence measurements of the polarization of
fundamental mode Rayleigh waves in regional studies.

The three stage inversion allows the development of structure
utilizing information from larger scale studies such as global mod-
els with the additional of regional information on phase dispersion
obtained by any convenient means such as direct measurements or
estimates of dispersion derived from 1-D models obtained by wave-
form inversion. Because the dispersion content is not dependent
on the particular parametrization employed in the waveform inver-
sion, 1-D models from different styles of waveform matching can
be combined through their dispersion characteristics.

It is possible to use simple models for waveform inversion and
use separate isotropic representations of Love and Rayleigh wave
dispersion. This enables full coverage of Love and Rayleigh wave
paths to be exploited and offers the potential of better resolution of
anisotropic effects especially for Love waves.

The scheme we have described is designed to exploit the phase
dispersion of surface waves, particularly through the influence on
seismic waveforms. However there is also a valuable set of informa-
tion on seismic structure available through group velocity studies
(see, e.g. Ritzwoller & Levshin 1998). Hitherto the phase and group
speed information has normally been treated separately because of
the very different styles of analysis used. With the new empha-
sis on dispersion maps as a common vehicle for different types of
phase based information we can envisage augmenting the third step
in the tomographic inversion by undertaking a simultaneous inver-
sion of phase and group velocity information for the localised cells
(cf. Villaseñor et al. 2001).

If we work with complex slowness, we can include attenuation
effects in the three-stage analysis and, in principle at least, begin to
bring amplitude information to bear on the 3-D wave speed structure,
including the influence of focusing and defocusing.

The present inversion scheme is based on neglect of mode cou-
pling effects, but once we have a 3-D model we can test these as-
sumptions by looking at coupling effects along individual paths
(cf. Marquering et al. 1996) even though a full 3-D treatment
(Kennett 1998) is currently too computationally demanding. We can
envisage using the 3-D model to provide a basis for a perturbation
treatment with mode-coupling to extend the analysis of the seismo-
grams to higher frequencies and thereby improve the interpretation
of the body wave information represented by the higher modes.
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